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Adaptive Critic Autopilot Design of Bank-to-Turn
Missiles Using Fuzzy Basis Function Networks

Chuan-Kai Lin

Abstract—A new adaptive critic autopilot design for bank-to-
turn missiles is presented. In this paper, the architecture of adap-
tive critic learning scheme contains a fuzzy-basis-function-network
based associative search element (ASE), which is employed to ap-
proximate nonlinear and complex functions of bank-to-turn mis-
siles, and an adaptive critic element (ACE) generating the rein-
forcement signal to tune the associative search element. In the de-
sign of the adaptive critic autopilot, the control law receives signals
from a fixed gain controller, an ASE and an adaptive robust ele-
ment, which can eliminate approximation errors and disturbances.
Traditional adaptive critic reinforcement learning is the problem
faced by an agent that must learn behavior through trial-and-error
interactions with a dynamic environment, however, the proposed
tuning algorithm can significantly shorten the learning time by on-
line tuning all parameters of fuzzy basis functions and weights of
ASE and ACE. Moreover, the weight updating law derived from the
Lyapunov stability theory is capable of guaranteeing both tracking
performance and stability. Computer simulation results confirm
the effectiveness of the proposed adaptive critic autopilot.

Index Terms—Adaptive critic design, adaptive robust control,
bank-to-turn missiles, fuzzy basis function networks, reinforce-
ment learning.

NOMENCLATURE

Acceleration along the directions , , and
at center of mass, respectively.

Right-handed orthonormal basis of body
coordinate frame, which is attached to the
center of mass, , of the missile, where ,

are on the longitudinal and lateral axis,
respectively.
Aerodynamic force coefficients corre-
sponding to the axes , , and , re-
spectively.
Moment coefficients corresponding to the
axes , , and , respectively.

, , Effective deflation angle, elevator deflation
angle and rudder deflation angle, respec-
tively, (rad).
Right-handed orthonormal basis of inertial
coordinate frame.

, , External forces along the axes , , and ,
respectively, (N).
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, , Moment of inertia of the missile body about
the axes , , and , respectively,

.
, Missile length, (m) and missile mass, (kg).

Mach number.
, , Total moment of inertia about the axes ,

, and , respectively, .
Dynamic pressure, .

, , Roll rate, pitch rate, and yaw rate corre-
sponding to the axes , , and , respec-
tively (clockwise), (rad/s).
Aerodynamic reference area, .
Thrust, (kg).

, Velocity of sound, (m/s), and velocity of mis-
sile, (m/s).
Bandwidth of actuator, (rad/s).
Velocity vector of the missile transformed
with respect to the body frame, (m/s).
Position vector of the center of mass of the
missile transformed with respect to the iner-
tial frame, (m).

, attack angle and sideslip angle, respectively,
(rad)

, , Actuator inputs for aileron deflation angle,
elevator deflation angle and rudder deflation
angle, respectively, (rad).
Body-axis roll angle measured from the
downward vertical to about the axis ,
(rad).
Body-axis pitch angle measured from the
projection of onto the horizontal plane to

, (rad).
Body-axis yaw angle measured between a
fixed compass bearing and the projection of

onto the horizontal plane, (rad).

I. INTRODUCTION

I N RECENT years, the autopilot design for bank-to-turn
(BTT) missiles has been widely studied by researchers

according to BTT missiles gain an advantage over skid-to-turn
missiles, which have lower maneuverability and aerodynamic
acceleration [1]. To obtain desired direction of aerodynamic
normal force, BTT missiles should be capable of rapidly
changing the orientation of acceleration by the roll motion
[2]. However, the dynamics of high performance BTT missiles
produces such a high roll rate combined with the asymmetric
geometry will introduce strong coupling between pitch and
yaw motions. Moreover, the nonminimum phase phenomenon
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and highly nonlinear aerodynamics make the autopilot design
of BTT missiles to be a severe challenge.

Several control methodologies have been applied to the
autopilot design for BTT missiles including sliding mode
control [3], gain-scheduling control [4], control [5], [6],
neural-network-based control [6]–[8], and others [9]–[11].
Most approaches are based on input/output (I/O) feedback
linearization technique to obtain the model of BTT missiles
and then apply control methods to design advanced autopilots.
Currently, exploiting neural networks for designing autopilots
of missiles has been widely studied [6]–[8], [12], [13]. The
neural-network-based autopilots [5], [8] can operate in many
flight conditions with the same controller, and therefore are
superior to gain-scheduling autopilots. Furthermore, neural
networks can be used to approximate the unknown dynamics
of the BTT model, and robust control law with weight updating
law derived by Lyapunov theory can achieve the satisfactory
tracking performance and guaranteed stability. In summary,
designing autopilots using neural networks has become an
attractive and interesting approach.

Unlike the above neural-network-based autopilots, a different
intelligent autopilot which uses an adaptive critic [14] is pro-
posed, in the form of the adaptive heuristic critic (AHC) design
[15]. The AHC design consists of an associative search element
(ASE) and an adaptive critic element (ACE). The ACE receives
a reinforcement learning signal to generate an internal reinforce-
ment learning signal for tuning the ASE, which is employed
to generate control action. Therefore, the learning of adaptive
critic neural networks is performed by the signal from a critic
neural network instead of gradient information. In other words,
the adaptive critic neural network can learn from a dynamic en-
vironment with less information than supervised learning. How-
ever, recent adaptive critic designs [16] including heuristic dy-
namic programming (HDP) [17], dual heuristic programming
(DHP) and globalized DHP need many epochs for learning due
to trial-and-error. A new adaptive critic control [18]–[20] design
is proposed which does not produce the whole control. Instead,
an ASE is used to approximate the nonlinear plant dynamics,
and its output is used to augment the final control action. Based
on the approximation capability of adaptive critic neural net-
works, such a control law with online weight updating laws de-
rived by Lyapunov theory can provide a fast learning scheme.

The architecture of adaptive critic controller in [18] and
[19] is slightly different from the original adaptive critic con-
troller [15], the former has two independent multilayer neural
networks: one for ACE (critic module) and another for ASE
(action module), however, the latter has only one decoder
(the same input and hidden layers or the same premise part
of fuzzy rules) for ACE and ASE. Besides, the adaptive critic
controllers in [18] and [19] need an additional integrator to
accumulate an auxiliary critic signal. Thus, the structure of the
original adaptive critic controllers is simpler. Another attractive
feature of this adaptive critic controller [20] is that it uses
the reinforcement directly instead from the ACE, however, a
more informative internal reinforcement signal evaluated by
the critic module will also be omitted. Inspired from [14],
we proposed an autopilot with adaptive critic structure as
the Barto-Sutton-Anderson’s model [15] to improve the slow

trial-and-error learning process and guarantee the stability of
the closed-loop system as neural-network-based autopilots
[5], [8]. In order to provide the local learning capability and
preserve the simpler structure, we adopt fuzzy basis functions
(FBFs) as the decoder and the ACE and ASE are linear combi-
nations of the same FBFs. The difference between the proposed
adaptive critic autopilot and the adaptive critic controller in [21]
is that the proposed adaptive critic autopilot can tune centers
and widths of FBFs to avoid designing a sparse and large
fuzzy rule base or heuristically determining centers and widths
of FBFs. Therefore, the purpose of this paper is to develop
an adaptive critic autopilot to adapt all parameters of ACE,
ASE and decoder (FBFs) online so as to ensure the tracking
performance and stability for the BTT missile.

The rest of this paper is organized as follows. Section II de-
scribes the adaptive critic controller structure and some mathe-
matic fundamentals. Section III states the model of the BTT mis-
siles and the control objective. Section IV presents the adaptive
critic autopilot and stability analysis. In Section V, simulation
results illustrate the availability and effectiveness of the pro-
posed adaptive critic autopilot for BTT missiles. Finally, Sec-
tion VI concludes the paper.

II. PRELIMINARIES

A. Fuzzy Basis Function Network

Generally speaking, a fuzzy system comprises a fuzzification
unit, a fuzzy rulebase, an inference engine and a defuzzifica-
tion unit. The fuzzy system can be viewed as performing a real
(nonfuzzy) and nonlinear mapping from to . The
interfaces between real world and fuzzy world are a fuzzifier
and a defuzzifier; the former maps real inputs to their corre-
sponding fuzzy sets and the latter performs in the opposite way
to map from fuzzy sets of output variables to the corresponding
real outputs. The fuzzy rule base consists of fuzzy rules, which
use linguistic IF-THEN sentences to describe the relationship be-
tween inputs and outputs. Consider a fuzzy rule consisting of
rules as follows.

( th rule): If is and is and … and
is then is and is and … and is

where , are the input vari-
ables of the fuzzy system, are the output
variables of the fuzzy system, and input linguistic terms
and output linguistic terms are characterized by their corre-
sponding fuzzy membership functions and ,
respectively. Each rule can be viewed as a fuzzy implication
determined by the inference engine.

The above fuzzy system with center-average defuzzifier,
product inference, and singleton fuzzifier is of the following
form:

(1)
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Fig. 1. FBFN structure.

where . Equation (1) can be written as sum of
firing strength of rules

(2)

where the firing strength
. For ease of representing in the network

architecture, the firing strength is rewritten as the product of

(3)

The shape of each membership function is chosen
as the Gaussian function, i.e., with
inverse variance and center . From the viewpoint of
geometry [22], the universe of discourse can be covered by
well-defined fuzzy rules and each fuzzy rule can be considered
as a cluster with center . Therefore, the
architecture of the fuzzy basis function network, which is
shown in Fig. 1, can be represented by a three-layer network
with Gaussian functions as its activation functions in the hidden
layer and weights ’s connecting hidden layer and output
layer. Thus, the output vector of fuzzy basis function network
(FBFN) can be expressed as

(4)

where ,
, ,

, , is an
matrix and

By the Stone–Weierstrass theorem, the FBFN can be
proved that it is capable of uniformly approximating any
real continuous function on a compact set to any
arbitrary accuracy [23], i.e., there exists an ideal FBFN,

, with ideal parameters , , and such that
. Therefore, can be

represented as

(5)

Fig. 2. BTT missile diagram.

where . In this paper, all norms of vectors and ma-
trices adopt Frobenius norm. The norms of the ideal parameters
should satisfy the following assumption.

Assumption 1: The norms of ideal parameters, , , and
, are bounded by positive real values, i.e., ,

, and .
Clearly, we need to estimate the ideal FBFN by an estimate

FBFN . The weight updating law will be
stated in the following section.

B. Mathematical Notation

The norm of a vector and the Frobenius norm used in the
following sections are defined previously. Let denote the real
numbers, denote real -vectors, and be real
matrices. The norm of a vector is defined as

(6)

and the Frobenius norm of is defined by

(7)

It should be noted that the Frobenius norm is also compatible
with the 2-norm, i.e., .

The trace of a square matrix , , is defined as
the sum of diagonal elements of . Clearly, the trace of a square
matrix and the trace of the transpose of the square matrix are the
same, i.e., . Given , ,
and , we have the following properties:

(8)

(9)

III. PROBLEM STATEMENT

All variables of the BTT missile used in the following equa-
tions are listed in Nomenclature. Assuming the BTT missile
shown in Fig. 2 is a rigid body, the complete six-degree-of-
freedom dynamics of BTT missiles can be given by

(10)

(11)
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(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

where , , , ,
, , , ,

,
, ,

, , and .
The actuator is modeled by a first-order system as follows:

, and
. The above 6-DOF missile dynamic equations and detailed

process of derivation can be referred to [2].

In general, the objective of the autopilot design is to drive the
BTT missile to track the commands generated from guidance
system including desired rolling angle , and desired acceler-
ations and . Such an output, i.e., for the
BTT missile system will cause a nonminimum phase phenom-
enon, thus I/O feedback linearization techniques can not be ap-
plied directly for acceleration control of BTT missiles [2]. Much
research surmounts the difficulty by adopting redefined outputs
as [9], [10], [2],
[3] or ( is an aerodynamic bank angle) [12] so as to
apply I/O feedback linearization technique to BTT missiles. Ac-
cording to and derived from and (
and ), our new output signals are assigned as

.

The nominal plant of BTT missiles can be rewritten by the
input-output feedback linearization technique in the following
form:

(20)

where , and
. The assumed strong

relative-degree for the three input-output channels
is found to be (3, 2, 2) [2], [8]. The zero dynamics are assumed

to be exponentially stable. In the above equation, is an
unknown function vector, is the input vector, and the nine
elements of the known are as follows:

(21)

where ’s are aerodynamic coefficients, which are complex
functions of and .

The commands now are rewritten in the form of

(22)

where remains the same, while and
with a constant . In practice, the desired

trajectories (for ) and (for ), which should be
smooth, are generated by two first-order filters with inputs
and . The desired trajectory for , , still remains zero for
keeping small sideslip angle due to .

Then, the tracking errors are defined as follows:

(23)

where , , and are the desired trajectories of , , and
, respectively. Hence, a sliding-surface vector is defined

as

(24)

where each is a strictly positive constant for .
Differentiating with respect to time, we can get

(25)

where
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Fig. 3. Barto-Sutton-Anderson’s model [15] is represented by an FBFN.

Fig. 4. ACE receives the reinforcement learning signal from critic mechanism
to generate an internal reinforcement signal.

Assume the inverse of known matrix , , exists
and the unknown is approximated by , then the control
law can be selected as

(26)

where and is used to atten-
uate uncertainties including approximation errors and external
disturbances. Substituting (26) into (25) yields

(27)

The estimation , which can approximate accurately,
is implemented by the ASE. Due to approximation errors, our
control goal is to design an adaptive critic autopilot for the BTT
missile system which reduces approximation errors and tracks
the desired trajectory while maintaining a small sideslip angle.

IV. AUTOPILOT DESIGN

A. Adaptive Critic Controller Structure

Based on the architecture of reinforcement learning control
systems [15], we employ the premise part of FBFN as the de-
coder of states as shown in Fig. 3. The consequent part of FBFN
is separated into two parts: one is corresponding to the ASE
shown in Fig. 5 and another is corresponding to the ACE shown
in Fig. 4. In the spirit of actor-critic reinforcement learning con-
trol, the weights of fuzzy approximator (ASE) will be tuned by
the signal from ACE. During the online control process, the ASE
establishes the associations between firing strengths of rules and
nonlinear functions under the influence of reinforcement feed-
back. Moreover, the ACE in Fig. 4 produces a more informative
signal than a single reinforcement signal as in [20].

Fig. 5. ASE approximates nonlinear functions.

The firing strength of fuzzy rules can be denoted as the fol-
lowing vector form:

(28)

where is the estimate of and is the estimate of . Thus,
the outputs of ASE and ACE can be represented as and

, respectively. Different from the original adaptive critic
controller [15] and the reinforcement adaptive controllers [20],
[21], the parameters of decoder (FBFs), and , can be tuned.
Besides self-tuning and , there are two ways to determine

and : one is heuristically determined by experts and one is
contains all rules but sparse and large. Therefore, it is worth
making more computation effort to tune and .

The process of generating the bounded reinforcement signal
is through the performance measurement unit measuring

the system states to provide an error metric signal vector
for the critic unit to generate the reinforcement signal

. Thus, a special critic function is defined as
[20]

(29)

where is a positive constant and the value of is bounded
in the interval with . In [18] and [19], al-
though the reinforcement signal, which directly employs , can
be proved to be bounded, such a reinforcement signal with un-
known bound is different from that in [15]. The critic function
outputs a zero reward when the error metric is zero, and a larger
reward magnitude for larger error metric gains. The difference
between the reinforcement signal in [15] and this paper is that
the reinforcement signal in the former is only “0” or “1”, how-
ever, in the latter is a real value and attempts to decay to zero
by Lyapunov theory. After receiving the reinforcement signal ,
the adaptive critic learning scheme will manipulate an internal
reinforcement signal for ACE to tune the ASE. The internal
reinforcement signal is of the following form:

(30)

which is an estimate of ideal internal reinforcement signal . It
should be noted that if we can prove that (or ) will approach
zero, then the reinforcement signal will also approach zero.

Specifically, the control input in Fig. 6 mainly consists of
an ASE, a fixed gain controller and a robustifying term ,
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Fig. 6. Overall adaptive critic autopilot structure.

which corresponds to reject approximation errors of ASE and
disturbances. From the above description, we know the basic
structure of the proposed adaptive critic autopilot is the same
as the Barto-Sutton-Anderson’s model [15], however, there are
still some differences including that the former employs fuzzy
basis function networks to implement the decoder, ACE and
ASE, and the evaluation of and . Besides, the major dif-
ferences are the control law, weight updating laws of the pro-
posed adaptive critic autopilot can guarantee the stability of
the closed-loop system and guarantee the tracking performance
without trial-and-error learning process. In the following, the
details of the control law, weight updating law, and stability
analysis will be discussed.

B. Stability Analysis

It is assumed that there exist ideal weights and such
that is the ideal internal reinforcement signal
and is ideal approximator of . According to the ap-
proximation capability of FBFN, the ideal

and can be approximated by and

, respectively. Thus, the objective of the autopilot design is
to achieve good tracking performance and guaranteed stability
with , , and tuned online. In order to accomplish this
goal by Lyapunov theory extension, the FBFs are linearized.
Thus, take the expansion of in a Taylor series to
obtain

...
...

...

(31)

where , ,
, , is a vector of

higher order terms and and are defined as

Assumption 2: The vector of higher order terms in (31), ,
is bounded, and and are also bounded, i.e., ,

, and .

Using (31), the output of ACE can be represented as

(32)

where . On
the other hand, the error between the output of ideal ASE and
ASE can be derived as

(33)

Therefore, error dynamics (27) can be rewritten as

(34)

The robustifying term is defined as

(35)

with .
The reinforcement signal plays an important role in adaptive

critic learning system and we express it in the following vector
form:

(36)

where ,
1, 2, 3. Next, we establish a theorem, which provides the

stability analysis.
Theorem: Apply the control law (26) to the BTT missile

system (20) with the robustifying term (35). The weight update
rules for the FBFs, ASE, and ACE are defined as

(37)

(38)

(39)

(40)

(41)

where , and , , , , and are positive and
diagonal constant matrices. Suppose that the desired trajectories
are bounded and differentiable, and assumptions 1 and 2 are
hold. And the reinforcement signal and internal reinforcement
signal are provided by (36) and (30), respectively. Then, ,

, , and remain bounded, and the error metric and the
tracking errors will approach zero.

Proof: Define a Lyapunov function candidate

(42)
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where

Take the time derivative of and use
and (34) and (37); then (42) can be written as

(43)

Substituting (32) and (38)–(40) into (43) yields

(44)

Because , (44)
becomes

(45)

where . The uncertainty term multiplied
by is given by

(46)
According to and , , it is easy

to obtain

(47)

Based on assumption 1 and 2, and (47), the norm of (46), ,
satisfies the following inequality:

(48)

with
. Since

,

, , and

, we have

(49)

Rewrite (49) using (35) and (41) as

(50)

Hence, for all , and if , , , ,
, and are bounded at initial time , they will remain

bounded for all . According to and are bounded,
and are bounded for all , and since is

bounded as specified, is bounded as well. All , , , ,
and are bounded indicates all weights , , , , and are
bounded.

To prove as , it can be easily shown by
applying Barbalat’s lemma

with

(51)

We can observe that denotes the solution of
to the system given by (25) and every bounded term in
(42) implies is a uniformly continuous function of time.
Since is nonnegative, and for all time ,
using Barbalat’s lemma can prove that and hence

as .
Remark: Since as , the reinforcement signal

as and the internal reinforcement signal
as as well.

V. SIMULATION RESULTS

In this section, we will present simulation results of the pro-
posed adaptive critic autopilot applied to BTT missiles. A com-
parison of original with extended adaptive critic controller [21]
confirms that the latter with online tuning capability shortens
the learning time. Moreover, a missile cannot be launched again
and again for the trial-and-error learning algorithm, and there-
fore no comparison result with original adaptive critic controller
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is presented. Results presented here only for the proposed au-
topilot is under the assumption that the aerodynamic pressure

, where is the air density determined by the height
of missile which can be derived from function (i.e., is
a function of height and velocity of missile). Thus, we simu-
lated an 18-s flight scenario which operated within 0.5 to 4.5
Mach and 0 to 35 km, velocity and height range, respectively.
For traditional gain-scheduling autopilot designs, a controller is
required for each operating point. The proposed adaptive critic
autopilot design, on the other hand, does not change parameters
under different operating regimes. The desired commands of the
four principal flight conditions are

1) , , and
;

2) , , and ;
3) , , and ;
4) , , and .
In the following simulations, the BTT missile is subject to the

following physical limitations:

1) attack angle : ;
2) sideslip angle : ;
3) roll rate : ;
4) pitch rate : ;
5) yaw rate : ;
6) actuator position saturation: , and

.
The number of FBFs (fuzzy rules) is chosen as 20 and each

FBF specifies their initial centers and inverse radii as small
random numbers. For traditional fuzzy system design, if each
variable utilized is characterized by three fuzzy linguistic terms,
then the number of fuzzy rules required for the BTT missile
system with 12 input variables is . From the viewpoint of
computation efficiency and real-time control, a huge and sparse
fuzzy rule base is not adequate and, therefore pre-determined
number of FBFs with self-tuned parameters of the proposed ap-
proach is a better design strategy. The initial state is assigned as

.
The parameters of the adaptive critic autopilot is as follows.

1) sliding-surface:
;

2) fixed gain: ;
3) parameters of reinforcement signals:

and ;
4) parameters of updating law: ,

, ( is an
identity matrix), and .

The simulation programs written in C language run on Pen-
tium 4 PC with 128-MB RAM. The desired trajectories and

are generated by and
, where is dependent on the height of the

missile and . In the four nonzero commands intervals, BTT
missile should roll to and achieve the demand acceleration
command by means of a high rolling rate [as shown in
Fig. 7(a)] which induces a cross-coupling effect resulting in a
small transient in pitch acceleration and a small overshoot in
yaw acceleration as shown in Fig. 7(b) and (c). Furthermore,
Fig. 7 also confirms the cross-coupling effect can be overcome

Fig. 7. Outputs of BTT missiles show the responses of an 18-s flight scenario:
(a) roll angle �; (b) acceleration A ; (c) acceleration A (dashed line: desired
trajectory; solid line: actual trajectory).

Fig. 8. Simulation results of roll rate, pitch rate, and yaw rate show that all
meet the requirements: (a) jP j � 500 =s; (b) jQj � 50 =s; and (c) jRj �
150 =s.

by our autopilot design. Such a continuous flight scenario only
requires a single proposed autopilot design as oppose to many
linear controllers in gain-scheduled autopilot design.



LIN: ADAPTIVE CRITIC AUTOPILOT DESIGN OF BTT MISSILES USING FBFN 205

Fig. 9. Simulation results of pitch angle and yaw angle.

Fig. 10. Simulation results of body frame velocities of the BTT missile show
that: (a) U and (c)W have significant magnitudes and (b) V keeps small for
achieving the small A .

Figs. 8 and 12 show that not only the high roll rate , pitch
rate , and yaw rate can meet the physical limitation, but
also inputs of actuators can satisfy the physical requirements.
Moreover, in Fig. 13, we have positive angle-of-attack and
small sideslip angle as required. It should be noted that all
training processes are online and all physical limitations are
satisfied. Other states of BTT missiles including pitch angle,
yaw angle, positions, and velocities are shown in Figs. 9–11.
The reinforcement signal , which will approach zero, is de-
picted in Fig. 14. From the simulation results, the robust stability
and tracking performance of the proposed adaptive critic control
scheme can be confirmed. Compared with traditional adaptive
critic designs and reinforcement learning framework, the pro-
posed adaptive critic control scheme can learn faster due to no
time-consuming trial-and-error learning phase.

Fig. 11. Simulated positions of the BTT missile show the flight trajectories.

Fig. 12. Simulation results of actuator inputs of the BTT missile meet the
specification, i.e.: (a) ju j � 20 ; (b) ju j � 20 ; and (c) ju j � 20 .

VI. CONCLUSION

In this paper, a new adaptive critic autopilot has been
proposed to control BTT missiles. Unlike traditional rein-
forcement learning approaches, we adopted an FBFN-based
ASE to approximate the nonlinear dynamics of a BTT mis-
sile which output is then used to augment the control action.
Combined with robust adaptive control and Lyapunov theory,
all parameters of FBFs, ACE and ASE can be online tuned
with satisfactory tracking performance and guaranteed robust
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Fig. 13. Simulation results of attack angle � and sideslip angle � show that
the attack angle keeps positive and the sideslip angle remains small.

Fig. 14. Simulation results of reinforcement signals: (a) r , (b) r , and (c) r ,
which will decay to zero.

stability. Compared with traditional adaptive critic designs and
reinforcement learning approaches, the proposed adaptive critic
autopilot can prevent from time-consuming trial-and-error
learning, which is not suitable for autopilot design. Further-
more, we can use only one autopilot through the entire flight
process containing various flight conditions by adaptive con-
trol law and adaptive updating laws, and effectively reduce
the size of rule base due to all tunable parameters of FBFs.
Simulation results for the proposed autopilot applied to BTT
missiles demonstrate that the control objectives can be achieved
effectively and successfully.
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