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State-Constrained Agile Missile Control With
Adaptive-Critic-Based Neural Networks

Dongchen Han and S. N. Balakrishnan

Abstract—in this study, we develop an adaptive-critic-based —eee
controller to steer an agile missile that has a constraint on
the minimum flight Mach number from various initial Mach
numbers to a given final Mach number in minimum time while
completely reversing its flightpath angle. This class of bounded
state space, free final time problems is very difficult to solve due
to discontinuities in costates at the constraint boundaries.We

use a two-neural-network structure called “adaptive critic” in X

this study to carry out the optimization process. This structure v

obtains an optimal controller through solving optimal con- e
trol-related equations resulting from a Hamiltonian formulation. e
Detailed derivations of equations and conditions on the constraint 2 B—

boundary are provided. For numerical experiments, we consider
vertical plane scenarios. Flight Mach number and the flightpath
angle are the states and the aerodynamic angle of attack is treated
as the control. Numerical results bring out some attractive features
\?J trflle \";‘dr‘""p\tllee” ?r:itic iﬁ?nproti(:hn?indilsr]tov‘{tthf?rtl tlhis I\%rirt]imriati:rr] Optimization has been a field of interest to mathematicians,
thci)s sstatg )c/:onztraingl(; optgi]mizeatior?spr%bcl)enffror% gﬁ envgloi)e(c))f SfC|em|Sts ar.]d englneers_ for a long tlm.e' Problems of .Optlmlza_
initial conditions. tion of functions or functionals and optimal control of linear or
nonlinear dynamical systems can be solved through direct or
indirect methods [1]. In direct methods where, in general, the
cost function is evaluated or indirect methods where, in gen-
eral, values of the derivatives are used to check optimum, sep-

I. INTRODUCTION arate solutions are obtained for each set of parameters or ini-

N ORDER to explore and extend the range of operations tig! conditions. For optimal solutions which encompass pertur-

air-to-air missiles. there have been studies in recent yeggtions to the assumed initial conditions or a family of initial
with a completely different concept. It consists of launching trgPnditions, we can use neighboring optimal control [1] or dy-
missile as usual from the aircraft and guiding it to interceptMIC programming [1]. Neighboring optimal control allows
target in the rear hemisphere (see Fig. 1). The best emergRjntwise solutions of an (optimal) two-point boundary value
alternative to execute this task is to use the aerodynamics &kgPlem (TPBVP) to be used with a linearized approximation
thrust to turn around the initial flight path angle of zero to a find]Ve" @ range of initial conditions. However, the neighboring op-
flight path angle of 180, (Every scenario can be considered astyna! solution can fail outside where linearization is invalid. Dy-
subset of this set of extremes in flightpath angle.) In this stud}2Mic Programming can handle a family of initial conditions for
we formulate an optimal controller to achieve this mission ij‘€ar as well as nonlinear problems. The usual method of solu-
minimum time with a constraint on the minimum flight Machfio": however, is computation-intensive. Furthermore, the solu-
number. This problem falls under a class callégé final time 10N iS not generally available in a feedback. o )
state-constrainetproblems in calculus of variations (optimal Several authors have used neural networks to “optimally
control) which for anenvelope of initial conditionis difficult SOV nonlinear systems [[2]-[4]]. Aimost all these studies fall
to solve. To our knowledge, there is no publication dealing witfithin four categories: 1) supervised control; 2) direct inverse

this difficult problem other than with using single set of initia€oNtrol; 3) neural adaptive control; and 4) backpropagation
conditions. through time [7]. These ideas have been used in aerospace ap-

plications also. For example, Kim and Calise [4] have proposed
a neural-network-based control correction based on Lyapunov
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Derivative of Cost

wheref;() can be either linear or nonlinear. The optimal control
problem can be formulated in terms of Hamiltonian [1] where
the Hamiltonian H;, is given by

Hi = Li(x(i),u(@)) + AT (i + 1) fi(x(4)), ().

CRITIC

®3)

The propagation equations for the Lagrange multiplies=
0,1,...N — 1, are given by

CONTROL
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. af \'y aL; \"
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Fig. 2. Schematic of adaptive critic. with boundary condition on as

. . . . . . T

uses than for their relationship to reinforcement learning. This AV = <8<P(x(N))> _ ®)

approach has a supervisor (critic) that critiques the output of dz(N)

the controller network. The supervisor network, in our cas - S

L ’ f I

outputs the Lagrange’s multipliers (costates). Each netwoﬁ{(ecessary condition for optimality is

uses the output of the other network, the propagation equations 0H; 0. ieo01 N_1 ©)

and the optimality equations in training. When the outputs ou(i) =SS )

are mutually consistent, the controller output is optimal. The
networks are trained off-line and yet, the resulting control E
used as a feedback control. Balakrishnan and Biega [4] have
shown the usefulness of this architecture for infinite finite-time The neural-network solution consists of obtaining a critic net-
linear problems. In this study, we present a feedforwatork (to output costates) and a controller network to output the
neural framework for the study of linear as well as nonlineag#ontrol at every stage. This process evolves in two stages.
finite-timeoptimal control problems. Synthesis of the Last Network:

This paper is organized as follows. Adaptive critic devel- 1) Note that\(N) = (9¢(x(N))/dz(N))T. For various
opment in the context of a fairly general finite time optimal random values af(N), Ax can be calculated.
control problem presented in Section Il. Hamiltonian cor- 2) Use the state-propagation (2) and optimality condition in
responding to the state constraints, features of constrained (6) to calculates_; for variouszy—1 by randomly se-
problems, and optimal solutions on the constraint boundary lectingz(/N) and the correspondinkyy from step 1.
are also discussed. Equations of motion for the missile are3) Withwuy_; andX, calculateh x_, for variousz 1 by

Adaptive Critic Solutions

given in Section Ill. Neural-network solutions to this specific
minimum time problem are discussed in Section IV. Solutions 4)
on the constraint boundary are also discussed. In Section V, itis
shown how to use the neurocontroller as a feedback controller.
Simulation results and conclusions are presented in Sections VI
and VII, respectively.

using the costate propagation (4).

Train two neural networks: For different valuesmof_ 1,
thewun—1 network outputs:y—_; and they_; network
outputsAy_i. We have optimal control and costates for
various values of the state at stagé £ 1) now.

It should be noted that we have eliminated the iterative nature

of guessing and updating the solutions to the costates in this
method through starting at the terminal stage.

1. PROBLEM FORMULATION AND SOLUTION DEVELOPMENT

A. Cost Function 1)

Through the neural-network methodology presented in this
study, we will be able to solve a fairly general class of optimal
control problems. The cost function is represented’ bwhere

N—-1

J = plz(N)] + Z Lila(d), u(@)]- 1)

In (1), L;() can be a linear or nonlinear function of the states 2)
and/or control angy() can be a linear or nonlinear function of
terminal statesL;() is also known as a utility functiors;indi-

cates the stage. The underlying system model is given by

3)

2(i+1) = fi(z(i), u(z)) )

Other Networks:

Assume different values of the states at stalje 2,
zn—2) and use a random network (or initialized with
upy—_1 hetwork) calleduy_» network to outputuy _o.
Useuy_o andz_o in the state propagation equation
to getzy 1. Inputz_; to theAn_1 network to obtain
An—1. Usexzny_o andAy_; in the optimality condition
in (6) to get targetu 2. Use this to correct thay_»
network. Continue this process until the network weights
show little changes. Thigx_o network yields optimal
UN_2.

Using randomz 55, output the controky o from the
un—_o network. Use thesen_» andun_o to getzy_1
and inputr 5 to generaté\y_1. Usexy_o, uy_2 and
An_1 to obtain optimalAy_o. Train a Ay_» network
with z 5_> as input and obtain optimaly_, as output.
Repeat the last two steps with= N — 1, N —2,...0
until we getu,.
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C. Optimal Solution When State Variable Inequality Mclintyre and Paiewonsky [10] have given a procedure to cal-
Constraint is Active culatewr. Assume a constrained problem where the following

The above method will yield optimal solutions provided thergonditions hold:
is no control or state variable constraintgvhen there are state 1) NV is specified {; is specified);
variable inequality constraints, these solutions will form optimal 2) dS/dt contains the contral;
solutions to the unconstrained arcs. This is because of the addi3) optimal solution contains only one boundary segment;
tional conditions imposed by the constraints as the trajectories4) no portion of the boundary segment is an extremal.
enterandleavethe constraint boundaries. Optimal solutions on Then, at the entry point where the states reach the constraint

the constrained parts will be obtained next. boundary, the multipliers satisfy
State Variable Inequality ConstraintsThe constrained as
. . . . . P . pp— _ .+
problem with the state variable inequality constraints is: find AMiT)=A@H) +7 (11)

Ax (i)
N-1 and the_integration is continued along the boundary wittil is
J=[x(N)] + Y Lifa(d), u(@)] zero. Since
=0

the control to minimize the cost function

pw=m >0 (atthe entry point)
and the system model and

z(i+1) = fi(z(i), u(v))

subject to the state constraints

1 <0 (12)

with equality holding only at a finite number of points due to

Slz(9)] <0 (7) condition 4) above, the quantitywill approach zero [11], [12].
When the trajectory leaves the boundary, the return to the inte-
In (7), S[.] is a nonlinear function of states. rior is made with
If the gth time derivative to the constraint equation is needed
in order to obtain an expression that contains the comtiet- AiT) = A () (13)

plicitly then (7) is called agth-order state variable inequality

constraint. Now the Hamiltonian is across the corner. Note that with neural networks, we proceed

backward. (This will become more clear in the application sec-
H; =L + X' (i + 1) f; + p(i + 1)7SDO[z(i)] (8) tion.) From this point onwards, we follow the steps outlined in
the last section.

where Note that\(: ™), A1), (¢) andr need to be calculated. We
S@z(i)] =0 on the constraint boundary = 0; use (4), (6) wherdd; defined by (8) to get:(z) andA(: ) since
(i) =0 off the constraint boundar§ < 0. the control is calculated from state propagation equatigit. )

u(i) is actually an influence function. A necessary condition faand« are calculated from (11) and (12).
u(?) is that it should be decreasing 6ifiz(i)] = 0.
Another necessary condition for state inequality constraiit. M INIMUM TIME PROBLEM TO REVERSE THEHEADING IN A

problems is that the following tangency constraints must be met VERTICAL PLANE
both at the entry to and the exit from the constraint boundary: The equations of motion in a vertical plane are presented and
S[z(i)] the minimgm time problem is formulated this section. The m_ain
St[z(4)] goal of thls_, s.tudy is t.o find the control (gngle-_of—attaclg) hl_s—
Plz(i)] = i -0 (9) tory to minimize the time taken by the missile in reversing its
. flightpath angle while flying above a minimum mach number.
S@=D[z(4)] In many engagements, most of the flight is dominated by two-

dimensional motion-either in a horizontal or vertical plane. It
Equation (9) forms a set of interior boundary conditions. Coshould be noted that extension of this method to a three-dimen-
sequently, the costates are in general discontinuous at theional engagements is straightforward.
junctions of constrained and unconstrained arcs. The following
relationship must be hold at the entry or the exit points: A. Equations of Motion of a Missile in a Vertical Plane

apr The nondimensional equations of motion of a missile (repre-
Tax(i) (10) sented as a point mass) in a vertical plane are

M) =T (") +n
! 2 :

i~ signifies just before andi™ signifies just after. Bryson, M= N SwM™Cp —siny +Tuycosa (14)

Denham and Dreyfus [9] have shown thathe associated La- v == [SuM?Cp, + Tysina — cos] (15)

grange’s multiplier is not unique at one of the junction points. If M

we pick 7 arbitrarily at the entry point, thenm at the exit point where prime denotes differentiation with respect to the nondi-

will be automatically determined. mensional time,r. The nondimensional parameters used in
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(14)-(15) arer = g/at; T, = T/mg; S, = pa®S/2mg and
M = V/a.

In this study, the final velocity is treated as a hard constraint.
This means that the flight path angle and the velocity constraints

Inthese equationg/ is the flight Mach numbery, the flight- are metexactlyat the final point. We express the dynamics and
path angleg, the aerodynamic angle of atta@k,the solid rocket associated optimal control equations in discrete form in order to
thrust,m, the mass of the missil&, the reference aerodynamicuse them with discrete feedforward neural networks. The system
areaV, the speed of the missil€}; , the lift coefficient,Cp, the  equations in discrete form

drag coefficientg, the acceleration due to gravity, the speed

of soundp, the atmospheric density an the flight time. Note Moy =M, +

thatCp andC', are functions of angle of attack and flight Mach
number and a neural network is trained to out@gtandC';, with
angle of attack and flight Mach number as inputs.

B. Minimum Time Optimal Control Problem

tey1 =t +
g(

(—SwM,?CDk — sinyx + Lwi cos ak) M,

SwMchk — oS Vg + Twr sin o Yk

an, Ok
. 20
SwMZCry — cosy + Tk sin ag,) (20)

Note that discretizingy implies that it is constant during the

The objective of the minimization process is to find the connterval considered. The corresponding Hamiltonian equation is

trol (angle-of-attack) history to minimize the time taken by the
missile to reverse its flightpath angle completely while the Madtx
number changes from an envelope of initial Mach numbers to a

an, Ok

given final Mach number of 0.8.
Mathematically, this problem is stated as to find the control

minimizing J, the cost function where + A

tr
/= /0 dt (16) For convenience, let us define

with the constraints/(0) = 0°, M(0) = given,y(t;) = 180°
and M(t;) = 0.8. This constrained optimization problem

g (SwMECLr—cos Vi + Ty sin ag,)
—SwMZ2Cps —sin v, + Ty cos oy ) My,
<Mk+( +Cpk Vi k k) My, -6%).

SwMZCri—cos v +Tr sin ag,

denk= S,, M Cr; — cos Y+ Lok SIn g, .

comes under the class of “free final time” problems in calculU¥ote that the term denk is in the denominator of (20) and (21)

of variations and is difficult to solve. No general solution exists
which generates optimal paths for flexible initial conditions.

We seek to provide such solutions using adaptive critic-based
neural networks. In order to facilitate the solution using neural
networks, the equations of motion are reformulated using the

ddenk
Bak

ddenk
M,

Crk
Bak

:25wM,30Lk + SwMz

+ Tk COS

IC i
oM, ~

=S, M}

(22)

flightpath angle as the independent variable. This process &rerivatives of the lift and drag coefficients with respect to the

ables us to have a fixed final condition as opposed to the “fraagle of attack and the Mach number are obtained from a neural
final time.” It should be observed that when we transform theetwork which stores these coefficients. The costate equation is
problem, the independent variable should be monotonically igiven in terms of denk as shown in (23) at the bottom of the

creasing. The transformed dynamic equations are

dM (—SwMQC’D — sin~y 4 Ty,cos a) M
W - SwM?2Cp, — cosvy + Tysin o

dt aM

dy g (SoM2Cp — cosy + Tysina)

page. Note that there is no boundary conditiomaincel! is
given at both ends. The necessary condition for optimality is

(17) OH;,
8ak

In an expanded form (24) becomes

=0. (24)
(18)

and the transformed cost function is a ddenk ICpx

- + Ak <Swj\li Do

alM g O
/= / <g (S'IUMQCL cosy + T,sin Oé) ) d’y (19) - )\k+1 (_SwMchk —sin )\k + Tk cos ak)
ddenk 0

+ Toprsin Oék> -denk

with the limits onv being zero and rad. Fon (25)
OH, . a- oy aMy.bv, ddenk
My, * T g-denk g.denk = 9My
=38, MZCpp — S M} %C;\Z‘ — sinyx + Ty cOS ak)
+ A1 - O denk
+ Ag1 + Akt - O (Swa’%CDk sty — Lk cos ak) M . 8denk' (23)

denk IM,,
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U Ao As noted in Section Il, the optimal solutions along the con-
strained path has to be considered separately.
C. Optimal Solution on the Constraint Boundar
Uy -~ s P . . Y .
= Now we apply the procedure discussed in Section Il to the
— missile problem. This problem can be stated as follows: given
the dynamics
—
ﬂ dM _ (=8,M?Cp —siny + Tya) M (26)

d—fy SwM?2Cp, — cosy + Ty sina

find a controller to minimize the cost function

B aM
J = d 27
~ /0 g (SuM?2Cr cosy + Ty sin ) 7 27)

subject to the state variable inequality constraint

Fig. 3. Schematic of successive adaptive critic controller and critic synthesis.

Atevery point we solve (25) using the Newton-Raphson methelere A7+ = 0.18). This is expressed in terms sfas
during the network training.

S=M*"-M<O. (29)

IV. DEVELOPMENT OFNEURAL—NETWORK SOLUTIONS

. The first derivative ofS is
The development of the neural networks for this problem pro-

ceeds in two stages. We start from the last stage and proceeéd(l) _dM - (—SwMQCD — siny + 7}, cos a) M
backward. Note thap(-) is zero in this formulation; however, T ody SM2Cp, — cosvy + T sin a )
the final state My is specified. (30)

Note that (30) contains the contrel. Consequently, our

A. Last Network problem is a state variable inequality constraint problem of

B. Other Networks

1) Final Mach numberMy, is fixed at 0.8. Set\y. For Order one. _ o S _
random values of/r_,, calculaten y_; from the state  1he corresponding Hamiltonian equation is: (in continuous

propagation equation. form)
2) Use optimality conditiord,,,, , (My_1,An,an—_1) =

0 to solve for appropriate . H =L+ +pst (31)
3) From the costate propagation equation, calculate; . where
4) Train two neural networks: They_; network outputs
an_1 for different values ofi/y_; and theAy_; net- fo aM oy _ _dM (32)
work outputsAy_; for different values ofMy_;. We dry dvy

have optimaky—; andAy -, now. Substituting the expression fgrfrom (32) in (31), we get

H=L+(\—p)f. (33)

1) Assume different values oy - and use a random
neural network (or initialized witlkxx 1 network) called  To work with neural networks, we write (33) in discrete form
an_2 hetwork to outputy_o. Use My_o andapy_2 as shown in (34) at the bottom of the next page.
to obtain Mpy_;. Input My _; to Ay_; network to get Speyeret al. [13] have shown that the solution to state vari-
An—1. Use Mn_s, Any—1 in Hy,,_, = 0to solve for able inequality constraint problem of order one contains only
an_2. Use thisay_o to correct the network. Continue one boundary segment. Furthermore, the final value of the inde-
this process untitv;_» network converges. Thisy_2 pendent variabley, is specified (equal to 180; it is apparent
network yields optimabey_s. that the boundary arc is not the optimal solution to the uncon-

2) Using randomMpy_» into network obtains optimal strained problem; so our problem satisfies all four conditions of
an_2. UseMpy_o anday_o to obtainM_; and input  Section Il [11]. Consequently, we can adopt the procedure in

to Ay_1 network to generatdy_1. UseMpy_», any_2  Section Il [11] for computing the quantities on the boundary.

and Ay _1 in costate equation to obtain optimak _». From [1] and [13] we know that separate computation of un-
Train Any—_2 network with A/y_» as input. We have constrained arc is possible in problems with state variable in-
An—2 network that yields optimaky_o. equality constraints if they contain only one constrained arc in

3) Repeatsteps5and6with= N —1, N —2,...,0,until the middle and the contribution of the constrained arc to the per-
we getag. A schematic of the network development igormance index depends only on the entry and exit values of one
presented in Fig. 3. variable ¢ or one component of).
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D. Development of Neural —Network Solutions on the 4) At the entry to the constraint boundary, we calculate the
Constraint Boundary discontinuous\, i ands as described in Section Il.

The procedure to develop neural-network solution on the un-
constrained path is similar to [13]. There are a few points that Y- USE OFNETWORKS IN REAL-TIME AS FEEDBACK
need to be noted, however. CONDITIONS

1) We have developed a neural-network solution corre- Assume any Mach numbeékd, [within the trained range] at
sponding to the unconstrained state variable probleithe initial point. Use they, neural network to find optimad
With state inequality constraints, parts of the solutioand integrate in time until a flightpath angjefor «; network is
can still be used. The optimal solution from the boundamgached; use the Mach numhbieh at that point to findv; from
segment to the final state is on the optimal trajectories tife«; neural network and integrate until the flightpath angle
the unconstrained problem. corresponding to the next controller is reached and so on, until
2) For the state variable inequality constraint problem, tibe boundary for the minimum Mach number is reached. On the
exit point is the tangency point where one unconstraindgundary, we use the state propagation equation to calculate the
state trajectory is tangent to the state constraint line. aontrol. It should be checked at each stage whether the state is
this point,;z = 0. on the boundary or not. As soon as the control takes it off the
3) At the exit point (the steg + 1) X is continuous, but at boundary, the neurocontroller is used until the final flightpath
the entry point\ experiences a jump; the key is to findanglev; is reached. It should be noted that the neurocontrollers
m; that is, to findy at the entry point. We solve forin  are obtained for the entire range (0 to 186f flightpath angles
the following way. From the state equation we can consince the entry point to the constraint boundary is different for
putea; sincea does not have any discontinuity and theach initial velocity.
Mach number is constant (minimum) on the boundary, the Note that the forwarehtegrationis donein terms of timeAs
costate equation can be written as a result, even though the network synthesis is duffifine, the
control isa feedback procedsased on current states.
by, aMy6v;, 9ddenk

A g-denk g -denk 3Mka; Rt = pn) 03¢ VI. NUMERICAL RESULTS
350 M{Ox — S0y gag — sin i + T cos on In this section, we present the numerical results from repre-
denk sentative simulations. Tables of aerodynamic datg;candCp,
+ (Mgt — pig1) + Mgt — fiag1) 671 variations with Mach numbers and angle of attack were pro-
(SwM;f - Cp 4 sin Ay - Tk cos ak) .M, 8denk vided by the.Air Force. Se_lectipn of the .nel.JraI-.n.etwork type
. deni oML and the architecture are primarily done with intuition only. All
en K (35) the neural networks in this study are feedforward networks. We
picked a feedforward network in order to facilitate numerical
Necessary condition for 0pt|ma||ty condition on the Conderivatives of the OUtpUtS with reSpeCt to the inpUtS. Each net-
straint boundary is work has a three-layered structure with the first layer having a
tangent sigmoidal activation function, the second layer having
dHy -0 (36) a logarithmic sigmoidal activation function and the third layer
day, ' having a unit gain. Each layer consists of nine neurons. Our
This leads to choices were proved to be adequate from thg resultglitMeot
try to optimize the structure of networks in this study. A Leven-
a ddenk 29Cpy . berg—Marquardt method is used to train the networks. Any other
g dan +Awn =) <S“’M’“ dauy L sin O”‘) denk training method would have been fine too.
+ (At — it - (-SewME - Cpre—sin ag+ Ty, cos ) The state inequality constraint is chosen such that the flight
adenk Mach numberp/ > 0.18. We used 21 controller networks cor-
oo = (37) responding to the unconstrained segment from the final point

to the boundary and another 30 networks to represent the solu-
From (35) and (37), we can compukg and ., on the tions from initial state to the entry point and entry to the exit
boundary. point. The number of networks was dictated by the convergence

dt
Hy = <%> Vi + (Mgt — pr1) - Mg
k
_ aMy, - oy
_9 (S’IUMIECLIC — COS Yk + Cka sin ak)
(=SwMiCpi — siny, + T, cos arg,)
SwM]gCLk — o8 YE + Twr sin o

+ (Mht1 — Mrr1) |:Mk + - My - 0 | - (34)
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Fig. 5. Mach number versus flightpath angle(M, = 0.33 ~ 0.8, M, = ';'[g[ 1 0’2”%’; gf gtiaggk" versus flightpath angley (M, = 0.33 ~ 0.8,

0.8, M > 0.18).

characteristics of the networks; If the intervals were léig.( histories are provided in Fig. 5. The costate histories and
was big), then the networks did not converge for the range tbfe angle of attack histories are presented in Figs. 6 and 7
Mach number used as inputs. A higher number of networks fas functions ofy. The nature of the solutions is seen better
a problem does not translate to more calculations for control éhaFigs. 8-10, which show Mach number, angle of attack
point. It simply means that we have to store more weights; evand the costate histories versus time, respectively. Note that
if this problem is formulated in three dimensions, this will leathe minimum Mach number constraint is satisfiegactly
only to a few thousand weights. One way to reduce the numtrirthermore, the solutiorefter the state constraint is reached
of networks or the number of weights is to treat the flight pathre the same for all cases (Fig. 5). This can be explained as fol-
angle as an input to the networks and reduce the number of nietvs: Observe that corresponding to the constraiht> A*,
works from 51 to one. the trajectory should include two interior segments and one
In [13], the neural-network solutions for the unconstraineldoundary segment. According to [1] and [13], we will have
problem are compared with a shooting method solution to shalifferent trajectories corresponding to n different initial Mach
that the neural solutions are indegptimal Mach number his- numbers in the interior segment from initial state until entering
tories with flightpath angle for the unconstrained problem athe boundary arc; they will enter the constraint at n different
provided in Fig. 4 [13]; For the state constrained problem, theBigihtpath angles ory values. However, there will be only one
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since there is only one initial state (minimum Mach numbe L
afterwards and only one final state (final Mach number) es and the angle of attack histories for a 51-network controller
should be noted thaB; each of these trajectories is different iﬁ r%d a 48-network controller are presented in Figs. 11 and 12.
. . . J Ven though the trajectory is more suboptimal, the constraints
time history (Figs. 8-10). o
L . S . and the end conditions are met. In order to study the effects
Note that the minimum flight time is different with different - . .
- X : o . of parameter variations, we changed the nondimensional thrust
initial Mach numbers. The flight time varies inversely with th . ; .
o e evel from 27 to 37 during the period when the flight path angle
initial Mach number. This is to be expected because for lowe . . . .
Mach number. less enerav is needed to reverse the headin changed from 0.55-1.17 radians which is a relatively long in-
’ 9y . . . gterval; the results from this experiment shown in Fig. 13 demon-
The advantage of using the adaptive critic approach is clear . .
; ) Strate that the network controllers can still steer the missile to a
from these solutions. For each starting Mach number a mip- _. !
) . . . . .desired final state accurately.
imum time trajectory has been obtained with a bound on min-
imum Mach number. However, the same cascade of neurocon-
VII. CONCLUSION

trollers is used to solve and generate optimal contrattsren-
An adaptive critic-based neural network solution for a

velope of initial conditionsWe carried out further numerical ex-
periments to test the robustness of controllers; we removed a flswunded state space, free final time” problem was proposed

controllers during the phase of flight (which means that some Besults from an agile missile application which is nonlinear
the controls are held for longer periods) before reaching the statedynamics and control show the potential of the adaptive

optimal trajectory from boundary segment to the final Statrionstraint and carried out the simulations. Mach number histo-
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