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State-Constrained Agile Missile Control With
Adaptive-Critic-Based Neural Networks

Dongchen Han and S. N. Balakrishnan

Abstract—In this study, we develop an adaptive-critic-based
controller to steer an agile missile that has a constraint on
the minimum flight Mach number from various initial Mach
numbers to a given final Mach number in minimum time while
completely reversing its flightpath angle. This class of bounded
state space, free final time problems is very difficult to solve due
to discontinuities in costates at the constraint boundaries.We
use a two-neural-network structure called “adaptive critic” in
this study to carry out the optimization process. This structure
obtains an optimal controller through solving optimal con-
trol-related equations resulting from a Hamiltonian formulation.
Detailed derivations of equations and conditions on the constraint
boundary are provided. For numerical experiments, we consider
vertical plane scenarios. Flight Mach number and the flightpath
angle are the states and the aerodynamic angle of attack is treated
as the control. Numerical results bring out some attractive features
of the adaptive critic approach and show that this formulation
works very well in guiding the missile to its final conditions for
this state constrained optimization problem from anenvelopeof
initial conditions.

Index Terms—Missile guidance and control, neural networks,
optimal control.

I. INTRODUCTION

I N ORDER to explore and extend the range of operations of
air-to-air missiles, there have been studies in recent years

with a completely different concept. It consists of launching the
missile as usual from the aircraft and guiding it to intercept a
target in the rear hemisphere (see Fig. 1). The best emerging
alternative to execute this task is to use the aerodynamics and
thrust to turn around the initial flight path angle of zero to a final
flight path angle of 180. (Every scenario can be considered as a
subset of this set of extremes in flightpath angle.) In this study,
we formulate an optimal controller to achieve this mission in
minimum time with a constraint on the minimum flight Mach
number. This problem falls under a class called “free final time
state-constrained” problems in calculus of variations (optimal
control) which for anenvelope of initial conditionsis difficult
to solve. To our knowledge, there is no publication dealing with
this difficult problem other than with using single set of initial
conditions.
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Fig. 1. Agile missile trajectory.

Optimization has been a field of interest to mathematicians,
scientists and engineers for a long time. Problems of optimiza-
tion of functions or functionals and optimal control of linear or
nonlinear dynamical systems can be solved through direct or
indirect methods [1]. In direct methods where, in general, the
cost function is evaluated or indirect methods where, in gen-
eral, values of the derivatives are used to check optimum, sep-
arate solutions are obtained for each set of parameters or ini-
tial conditions. For optimal solutions which encompass pertur-
bations to the assumed initial conditions or a family of initial
conditions, we can use neighboring optimal control [1] or dy-
namic programming [1]. Neighboring optimal control allows
pointwise solutions of an (optimal) two-point boundary value
problem (TPBVP) to be used with a linearized approximation
over a range of initial conditions. However, the neighboring op-
timal solution can fail outside where linearization is invalid. Dy-
namic programming can handle a family of initial conditions for
linear as well as nonlinear problems. The usual method of solu-
tion, however, is computation-intensive. Furthermore, the solu-
tion is not generally available in a feedback.

Several authors have used neural networks to “optimally”
solve nonlinear systems [[2]–[4]]. Almost all these studies fall
within four categories: 1) supervised control; 2) direct inverse
control; 3) neural adaptive control; and 4) backpropagation
through time [7]. These ideas have been used in aerospace ap-
plications also. For example, Kim and Calise [4] have proposed
a neural-network-based control correction based on Lyapunov
theory. A major difference between their approach and this
study is that the development of guidance law/control is based
on optimal control; hence, it is stabilizing and at the same time
minimizing a cost. A fifth and rarely studied class of controller
has the most interesting structure. It is called an adaptive critic
architecture (Fig. 2) [3], [6]–[9]. Note that in our work, the
adaptive critics are used more for effective computational
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Fig. 2. Schematic of adaptive critic.

uses than for their relationship to reinforcement learning. This
approach has a supervisor (critic) that critiques the output of
the controller network. The supervisor network, in our case,
outputs the Lagrange’s multipliers (costates). Each network
uses the output of the other network, the propagation equations
and the optimality equations in training. When the outputs
are mutually consistent, the controller output is optimal. The
networks are trained off-line and yet, the resulting control is
used as a feedback control. Balakrishnan and Biega [4] have
shown the usefulness of this architecture for infinite finite-time
linear problems. In this study, we present a feedforward
neural framework for the study of linear as well as nonlinear,
finite-timeoptimal control problems.

This paper is organized as follows. Adaptive critic devel-
opment in the context of a fairly general finite time optimal
control problem presented in Section II. Hamiltonian cor-
responding to the state constraints, features of constrained
problems, and optimal solutions on the constraint boundary
are also discussed. Equations of motion for the missile are
given in Section III. Neural-network solutions to this specific
minimum time problem are discussed in Section IV. Solutions
on the constraint boundary are also discussed. In Section V, it is
shown how to use the neurocontroller as a feedback controller.
Simulation results and conclusions are presented in Sections VI
and VII, respectively.

II. PROBLEM FORMULATION AND SOLUTION DEVELOPMENT

A. Cost Function

Through the neural-network methodology presented in this
study, we will be able to solve a fairly general class of optimal
control problems. The cost function is represented by, where

(1)

In (1), can be a linear or nonlinear function of the states
and/or control and can be a linear or nonlinear function of
terminal states. is also known as a utility function;indi-
cates the stage. The underlying system model is given by

(2)

where can be either linear or nonlinear. The optimal control
problem can be formulated in terms of Hamiltonian [1] where
the Hamiltonian, , is given by

(3)

The propagation equations for the Lagrange multiplier,
, are given by

(4)

with boundary condition on as

(5)

Necessary condition for optimality is

(6)

B. Adaptive Critic Solutions

The neural-network solution consists of obtaining a critic net-
work (to output costates) and a controller network to output the
control at every stage. This process evolves in two stages.

Synthesis of the Last Network:

1) Note that . For various
random values of , can be calculated.

2) Use the state-propagation (2) and optimality condition in
(6) to calculate for various by randomly se-
lecting and the corresponding from step 1.

3) With and , calculate for various by
using the costate propagation (4).

4) Train two neural networks: For different values of ,
the network outputs and the network
outputs . We have optimal control and costates for
various values of the state at stage ( ) now.

It should be noted that we have eliminated the iterative nature
of guessing and updating the solutions to the costates in this
method through starting at the terminal stage.

Other Networks:

1) Assume different values of the states at stage ( ,
) and use a random network (or initialized with
network) called network to output .

Use and in the state propagation equation
to get . Input to the network to obtain

. Use and in the optimality condition
in (6) to get target . Use this to correct the
network. Continue this process until the network weights
show little changes. This network yields optimal

.
2) Using random , output the control from the

network. Use these and to get
and input to generate . Use , and

to obtain optimal . Train a network
with as input and obtain optimal as output.

3) Repeat the last two steps with
until we get .
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C. Optimal Solution When State Variable Inequality
Constraint is Active

The above method will yield optimal solutions provided there
is no control or state variable constraints. When there are state
variable inequality constraints, these solutions will form optimal
solutions to the unconstrained arcs. This is because of the addi-
tional conditions imposed by the constraints as the trajectories
enterandleavethe constraint boundaries. Optimal solutions on
the constrained parts will be obtained next.

State Variable Inequality Constraints:The constrained
problem with the state variable inequality constraints is: find
the control to minimize the cost function

and the system model

subject to the state constraints

(7)

In (7), is a nonlinear function of states.
If the th time derivative to the constraint equation is needed

in order to obtain an expression that contains the controlex-
plicitly then (7) is called a th-order state variable inequality
constraint. Now the Hamiltonian is

(8)

where
on the constraint boundary ;
off the constraint boundary

is actually an influence function. A necessary condition for
is that it should be decreasing on .

Another necessary condition for state inequality constraint
problems is that the following tangency constraints must be met
both at the entry to and the exit from the constraint boundary:

(9)

Equation (9) forms a set of interior boundary conditions. Con-
sequently, the costates are in general discontinuous at the
junctions of constrained and unconstrained arcs. The following
relationship must be hold at the entry or the exit points:

(10)

signifies just before and signifies just after . Bryson,
Denham and Dreyfus [9] have shown that, the associated La-
grange’s multiplier is not unique at one of the junction points. If
we pick arbitrarily at the entry point, then at the exit point
will be automatically determined.

McIntyre and Paiewonsky [10] have given a procedure to cal-
culate . Assume a constrained problem where the following
conditions hold:

1) is specified ( is specified);
2) contains the control ;
3) optimal solution contains only one boundary segment;
4) no portion of the boundary segment is an extremal.
Then, at the entry point where the states reach the constraint

boundary, the multipliers satisfy

(11)

and the integration is continued along the boundary until is
zero. Since

(at the entry point)

and

(12)

with equality holding only at a finite number of points due to
condition 4) above, the quantitywill approach zero [11], [12].
When the trajectory leaves the boundary, the return to the inte-
rior is made with

(13)

across the corner. Note that with neural networks, we proceed
backward. (This will become more clear in the application sec-
tion.) From this point onwards, we follow the steps outlined in
the last section.

Note that , , and need to be calculated. We
use (4), (6) where defined by (8) to get and since
the control is calculated from state propagation equation.
and are calculated from (11) and (12).

III. M INIMUM TIME PROBLEM TO REVERSE THEHEADING IN A

VERTICAL PLANE

The equations of motion in a vertical plane are presented and
the minimum time problem is formulated this section. The main
goal of this study is to find the control (angle-of-attack) his-
tory to minimize the time taken by the missile in reversing its
flightpath angle while flying above a minimum mach number.
In many engagements, most of the flight is dominated by two-
dimensional motion-either in a horizontal or vertical plane. It
should be noted that extension of this method to a three-dimen-
sional engagements is straightforward.

A. Equations of Motion of a Missile in a Vertical Plane

The nondimensional equations of motion of a missile (repre-
sented as a point mass) in a vertical plane are

(14)

(15)

where prime denotes differentiation with respect to the nondi-
mensional time, . The nondimensional parameters used in
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(14)–(15) are: and
.

In these equations, is the flight Mach number,, the flight-
path angle, , the aerodynamic angleofattack,, the solid rocket
thrust, , the mass of the missile,, the reference aerodynamic
area, , the speed of the missile, , the lift coefficient, , the
drag coefficient, , the acceleration due to gravity,, the speed
of sound, , the atmospheric density andis the flight time. Note
that and are functions of angle of attack and flight Mach
numberandaneuralnetwork is trained tooutputand with
angle of attack and flight Mach number as inputs.
B. Minimum Time Optimal Control Problem

The objective of the minimization process is to find the con-
trol (angle-of-attack) history to minimize the time taken by the
missile to reverse its flightpath angle completely while the Mach
number changes from an envelope of initial Mach numbers to a
given final Mach number of 0.8.

Mathematically, this problem is stated as to find the control
minimizing , the cost function where

(16)

with the constraints , given,
and . This constrained optimization problem
comes under the class of “free final time” problems in calculus
of variations and is difficult to solve. No general solution exists
which generates optimal paths for flexible initial conditions.

We seek to provide such solutions using adaptive critic-based
neural networks. In order to facilitate the solution using neural
networks, the equations of motion are reformulated using the
flightpath angle as the independent variable. This process en-
ables us to have a fixed final condition as opposed to the “free
final time.” It should be observed that when we transform the
problem, the independent variable should be monotonically in-
creasing. The transformed dynamic equations are

(17)

(18)

and the transformed cost function is

(19)

with the limits on being zero and rad.

In this study, the final velocity is treated as a hard constraint.
This means that the flight path angle and the velocity constraints
are metexactlyat the final point. We express the dynamics and
associated optimal control equations in discrete form in order to
use them with discrete feedforward neural networks. The system
equations in discrete form

(20)

Note that discretizing implies that it is constant during the
interval considered. The corresponding Hamiltonian equation is

(21)
For convenience, let us define

denk

Note that the term denk is in the denominator of (20) and (21)

denk

denk
(22)

Derivatives of the lift and drag coefficients with respect to the
angle of attack and the Mach number are obtained from a neural
network which stores these coefficients. The costate equation is
given in terms of denk as shown in (23) at the bottom of the
page. Note that there is no boundary condition onsince is
given at both ends. The necessary condition for optimality is

(24)

In an expanded form (24) becomes

denk
denk

denk
(25)

denk denk

denk

denk

denk

denk
(23)
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Fig. 3. Schematic of successive adaptive critic controller and critic synthesis.

At every point we solve (25) using the Newton-Raphson method
during the network training.

IV. DEVELOPMENT OFNEURAL–NETWORK SOLUTIONS

The development of the neural networks for this problem pro-
ceeds in two stages. We start from the last stage and proceed
backward. Note that is zero in this formulation; however,
the final state, is specified.

A. Last Network

1) Final Mach number, , is fixed at 0.8. Set . For
random values of , calculate from the state
propagation equation.

2) Use optimality condition
to solve for appropriate .

3) From the costate propagation equation, calculate .
4) Train two neural networks: The network outputs

for different values of and the net-
work outputs for different values of . We
have optimal and now.

B. Other Networks

1) Assume different values of and use a random
neural network (or initialized with network) called

network to output . Use and
to obtain . Input to network to get

. Use , in to solve for

. Use this to correct the network. Continue
this process until network converges. This
network yields optimal .

2) Using random into network obtains optimal
. Use and to obtain and input

to network to generate . Use ,
and in costate equation to obtain optimal .
Train network with as input. We have

network that yields optimal .
3) Repeat steps 5 and 6 with , until

we get . A schematic of the network development is
presented in Fig. 3.

As noted in Section II, the optimal solutions along the con-
strained path has to be considered separately.

C. Optimal Solution on the Constraint Boundary

Now we apply the procedure discussed in Section II to the
missile problem. This problem can be stated as follows: given
the dynamics

(26)

find a controller to minimize the cost function

(27)

subject to the state variable inequality constraint

(28)

(here ). This is expressed in terms ofas

(29)

The first derivative of is

(30)
Note that (30) contains the control. Consequently, our
problem is a state variable inequality constraint problem of
order one.

The corresponding Hamiltonian equation is: (in continuous
form)

(31)

where

(32)

Substituting the expression forfrom (32) in (31), we get

(33)

To work with neural networks, we write (33) in discrete form
as shown in (34) at the bottom of the next page.

Speyeret al. [13] have shown that the solution to state vari-
able inequality constraint problem of order one contains only
one boundary segment. Furthermore, the final value of the inde-
pendent variable, is specified (equal to 180); it is apparent
that the boundary arc is not the optimal solution to the uncon-
strained problem; so our problem satisfies all four conditions of
Section II [11]. Consequently, we can adopt the procedure in
Section II [11] for computing the quantities on the boundary.

From [1] and [13] we know that separate computation of un-
constrained arc is possible in problems with state variable in-
equality constraints if they contain only one constrained arc in
the middle and the contribution of the constrained arc to the per-
formance index depends only on the entry and exit values of one
variable ( or one component of).
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D. Development of Neural —Network Solutions on the
Constraint Boundary

The procedure to develop neural-network solution on the un-
constrained path is similar to [13]. There are a few points that
need to be noted, however.

1) We have developed a neural-network solution corre-
sponding to the unconstrained state variable problem.
With state inequality constraints, parts of the solution
can still be used. The optimal solution from the boundary
segment to the final state is on the optimal trajectories of
the unconstrained problem.

2) For the state variable inequality constraint problem, the
exit point is the tangency point where one unconstrained
state trajectory is tangent to the state constraint line. At
this point, .

3) At the exit point (the step ) is continuous, but at
the entry point experiences a jump; the key is to find

; that is, to find at the entry point. We solve for in
the following way. From the state equation we can com-
pute ; since does not have any discontinuity and the
Mach number is constant (minimum) on the boundary, the
costate equation can be written as

denk denk
denk

denk

denk

denk

(35)

Necessary condition for optimality condition on the con-
straint boundary is

(36)

This leads to

denk
denk

denk
(37)

From (35) and (37), we can compute and on the
boundary.

4) At the entry to the constraint boundary, we calculate the
discontinuous , and as described in Section II.

V. USE OFNETWORKS IN REAL-TIME AS FEEDBACK

CONDITIONS

Assume any Mach number [within the trained range] at
the initial point. Use the neural network to find optimal
and integrate in time until a flightpath anglefor network is
reached; use the Mach number at that point to find from
the neural network and integrate until the flightpath angle
corresponding to the next controller is reached and so on, until
the boundary for the minimum Mach number is reached. On the
boundary, we use the state propagation equation to calculate the
control. It should be checked at each stage whether the state is
on the boundary or not. As soon as the control takes it off the
boundary, the neurocontroller is used until the final flightpath
angle is reached. It should be noted that the neurocontrollers
are obtained for the entire range (0 to 180) of flightpath angles
since the entry point to the constraint boundary is different for
each initial velocity.

Note that the forwardintegrationis donein terms of time. As
a result, even though the network synthesis is doneoff-line, the
control isa feedback processbased on current states.

VI. NUMERICAL RESULTS

In this section, we present the numerical results from repre-
sentative simulations. Tables of aerodynamic data ofand
variations with Mach numbers and angle of attack were pro-
vided by the Air Force. Selection of the neural-network type
and the architecture are primarily done with intuition only. All
the neural networks in this study are feedforward networks. We
picked a feedforward network in order to facilitate numerical
derivatives of the outputs with respect to the inputs. Each net-
work has a three-layered structure with the first layer having a
tangent sigmoidal activation function, the second layer having
a logarithmic sigmoidal activation function and the third layer
having a unit gain. Each layer consists of nine neurons. Our
choices were proved to be adequate from the results. Wedid not
try to optimize the structure of networks in this study. A Leven-
berg–Marquardt method is used to train the networks. Any other
training method would have been fine too.

The state inequality constraint is chosen such that the flight
Mach number, . We used 21 controller networks cor-
responding to the unconstrained segment from the final point
to the boundary and another 30 networks to represent the solu-
tions from initial state to the entry point and entry to the exit
point. The number of networks was dictated by the convergence

(34)
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Fig. 4. Mach number versus flightpath angle,
 (Unconstrained,M varies
from 0.33 to 0.8 andM = 0:8).

Fig. 5. Mach number versus flightpath angle,
 (M = 0:33 � 0:8,M =

0:8, M � 0:18).

characteristics of the networks; If the intervals were big (
was big), then the networks did not converge for the range of
Mach number used as inputs. A higher number of networks for
a problem does not translate to more calculations for control at a
point. It simply means that we have to store more weights; even
if this problem is formulated in three dimensions, this will lead
only to a few thousand weights. One way to reduce the number
of networks or the number of weights is to treat the flight path
angle as an input to the networks and reduce the number of net-
works from 51 to one.

In [13], the neural-network solutions for the unconstrained
problem are compared with a shooting method solution to show
that the neural solutions are indeedoptimal. Mach number his-
tories with flightpath angle for the unconstrained problem are
provided in Fig. 4 [13]; For the state constrained problem, these

Fig. 6. Costate,� versus flightpath angle,
 (M = 0:33 � 0:8,M = 0:8,
M � 0:18).

Fig. 7. Angle of attack,� versus flightpath angle,
 (M = 0:33 � 0:8,
M = 0:8, M � 0:18).

histories are provided in Fig. 5. The costate histories and
the angle of attack histories are presented in Figs. 6 and 7
as functions of . The nature of the solutions is seen better
in Figs. 8–10, which show Mach number, angle of attack
and the costate histories versus time, respectively. Note that
the minimum Mach number constraint is satisfiedexactly.
Furthermore, the solutionsafter the state constraint is reached
are the same for all cases (Fig. 5). This can be explained as fol-
lows: Observe that corresponding to the constraint ,
the trajectory should include two interior segments and one
boundary segment. According to [1] and [13], we will have
different trajectories corresponding to n different initial Mach
numbers in the interior segment from initial state until entering
the boundary arc; they will enter the constraint at n different
flightpath angles or values. However, there will be only one
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Fig. 8. Mach number versus time,t (M = 0:33 � 0:8, M = 0:8, M �

0:18).

Fig. 9. Costate,� versus time,t (M = 0:33 � 0:8,M = 0:8,M � 0:18).

optimal trajectory from boundary segment to the final state
since there is only one initial state (minimum Mach number)
afterwards and only one final state (final Mach number). It
should be noted that each of these trajectories is different in its
time history (Figs. 8–10).

Note that the minimum flight time is different with different
initial Mach numbers. The flight time varies inversely with the
initial Mach number. This is to be expected because for lower
Mach number, less energy is needed to reverse the heading.

The advantage of using the adaptive critic approach is clear
from these solutions. For each starting Mach number a min-
imum time trajectory has been obtained with a bound on min-
imum Mach number. However, the same cascade of neurocon-
trollers is used to solve and generate optimal control forthis en-
velope of initial conditions. We carried out further numerical ex-
periments to test the robustness of controllers; we removed a few
controllers during the phase of flight (which means that some of
the controls are held for longer periods) before reaching the state

Fig. 10. Angle of attack versus time,t (M = 0:33 � 0:8, M = 0:8,
M � 0:18).

Fig. 11. Mach number versus flightpath angle,
.

constraint and carried out the simulations. Mach number histo-
ries and the angle of attack histories for a 51-network controller
and a 48-network controller are presented in Figs. 11 and 12.
Even though the trajectory is more suboptimal, the constraints
and the end conditions are met. In order to study the effects
of parameter variations, we changed the nondimensional thrust
level from 27 to 37 during the period when the flight path angle
changed from 0.55–1.17 radians which is a relatively long in-
terval; the results from this experiment shown in Fig. 13 demon-
strate that the network controllers can still steer the missile to a
desired final state accurately.

VII. CONCLUSION

An adaptive critic-based neural network solution for a
“bounded state space, free final time” problem was proposed.
Results from an agile missile application which is nonlinear
in dynamics and control show the potential of the adaptive



HAN AND BALAKRISHNAN: STATE-CONSTRAINED AGILE MISSILE CONTROL 489

Fig. 12. Angle of attack,� versus flightpath angle,
 for robustness test
(M = 0:7, M = 0:8, M � 0:18).

Fig. 13. Mach number versus flightpath angle,� for robustness test with thrust
variation (M = 0:6, M = 0:8,M � 0:18).

critic approach to solve complex optimal guidance/control
problems. An added advantage in using these neurocontrollers
is that they provide minimum time solutions even when we
change the initial flight path angle from zero to any non zero
(positive) value. To our knowledge, there is no one tool (other
than dynamic programming) which provides such solutions for
flexible initial conditions.
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