
994 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

Control of Nonaffine Nonlinear Discrete-Time
Systems Using Reinforcement-Learning-Based

Linearly Parameterized Neural Networks
Qinmin Yang, Student Member, IEEE, Jonathan Blake Vance, Member, IEEE, and

S. Jagannathan, Senior Member, IEEE

Abstract—A nonaffine discrete-time system represented by the
nonlinear autoregressive moving average with eXogenous input
(NARMAX) representation with unknown nonlinear system dy-
namics is considered. An equivalent affinelike representation in
terms of the tracking error dynamics is first obtained from
the original nonaffine nonlinear discrete-time system so that
reinforcement-learning-based near-optimal neural network (NN)
controller can be developed. The control scheme consists of two
linearly parameterized NNs. One NN is designated as the critic
NN, which approximates a predefined long-term cost function,
and an action NN is employed to derive a near-optimal control
signal for the system to track a desired trajectory while minimiz-
ing the cost function simultaneously. The NN weights are tuned
online. By using the standard Lyapunov approach, the stability
of the closed-loop system is shown. The net result is a supervised
actor-critic NN controller scheme which can be applied to a gen-
eral nonaffine nonlinear discrete-time system without needing the
affinelike representation. Simulation results demonstrate satisfac-
tory performance of the controller.

Index Terms—Adaptive critic, adaptive dynamic programming,
Lyapunov stability, neural network control, reinforcement learn-
ing control.

I. INTRODUCTION

THE DESIGN of control laws for nonaffine, unknown,
nonlinear, and discrete-time systems is difficult due to the

inclusion of the control input inside the unknown nonlinearity.
Neural networks (NNs), on the other hand, have been utilized to
learn the unknown dynamics of nonlinear systems while relax-
ing the linear in the unknown parameter assumption. A single
weight tuning layer or linearly parameterized NNs such as ra-
dial basis function networks are more powerful than a standard
adaptive control [1], [2] where a system-dependent nonlinear
regression matrix is not required with NNs. Moreover, a linearly
parameterized NN is a compromise between computation and
accuracy. Past literature [3] reports the design of adaptive NN
controllers to affine unknown nonlinear discrete-time systems.

Manuscript received August 1, 2007; revised February 15, 2008. This work
was supported in part by the NSF Grants ECCS#0327877 and ECCS#0621924,
by the Department of Education GAANN program, and by the Intelligent
Systems Center. This paper was recommended by Guest Editor F. L. Lewis.

The authors are with the Department of Electrical and Computer Engineer-
ing, Missouri University of Science and Technology, Rolla, MO 65409-0040
USA (e-mail: jbvance@mst.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2008.926607

For a nonaffine unknown discrete-time system, such controller
techniques cannot be directly employed [9].

Reinforcement learning techniques [3]–[8] are widely used
to determine the solution of the optimal control of nonlinear
systems using a forward-in-time computation. However, most
of them are implemented either by using iterative schemes
or require that a valid model of the unknown nonlinear sys-
tem dynamics be available a priori. Moreover, stability is not
demonstrated.

To overcome the iterative schemes or the need for a model
in traditional dynamic programming schemes, several appeal-
ing online NN controller design methods were introduced in
[3]–[8], which were also referred to as forward dynamic pro-
gramming [9] or adaptive critic designs (ACDs). The central
theme of this family of methods is that the optimal control
law and cost function are approximated by NNs, which are
trained via backpropagation over time by using feedback from
the nonlinear system instead of finding the exact minimum.
Convergence analysis of the closed-loop system is normally not
given. Therefore, a new NN learning algorithm based on the
gradient descent rule is introduced in [4]. However, it employs
a simplified binary cost function. By contrast, the work in [5]
proposes a near-optimal controller design using the standard
Bellman equation [9], but the method is only applicable to
affine nonlinear systems.

Most frequently used nonaffine nonlinear discrete-time sys-
tems are described by the nonlinear autoregressive moving av-
erage with eXogenous input (NARMAX) representation [10].
An affinelike representation is first obtained, and then, a con-
troller is designed. However, certain stringent assumptions are
exerted (e.g., small control input signal magnitudes) which limit
its applicability. In addition, certain approximation techniques
are utilized wherein the higher order terms and disturbances are
ignored.

By contrast, in this paper, a novel single hidden-layer tunable
NN controller is introduced for nonaffine nonlinear unknown
discrete-time systems. An affinelike equivalent representation
in terms of error dynamics is first derived by using the mean
value theorem without ignoring any higher order terms and
in the presence of bounded disturbances, although transform-
ing the nonaffine system into an affinelike is not a straight-
forward task.

Then, by using a quadratic-performance index as the cost
function, a novel reinforcement-learning-based NN control
scheme with an online learning feature is developed for the

1083-4419/$25.00 © 2008 IEEE

YANG et al.: CONTROL OF NONAFFINE NONLINEAR DISCRETE-TIME SYSTEMS 995

affinelike error dynamics. The entire closed-loop system con-
sists of two NNs: 1) an action NN (or actor) to generate the
optimal (or near optimal) control signal to track both the desired
system output and to minimize the long-term cost function, and
2) an adaptive NN (or critic) to approximate the long-term cost
function J(x(k), u(x(k))) and tune the action NN weights so
that a near-optimal control action can be generated. Closed-
loop stability is still demonstrated. Next, the proposed control
scheme is tested on a general nonaffine nonlinear discrete-time
system and verified.

II. NONAFFINE NONLINEAR DISCRETE-TIME SYSTEM

A. System Dynamics

Consider a nonaffine nonlinear discrete-time system with
disturbances written in NARMAX form [10] as

y(k + τ) = f
(
yk, uk−1, u(k), dk+τ−1

)
= f

(
wk, u(k), dk+τ−1

)
(1)

where wk = [yT
k , uT

k−1]
T, yk = [y(k), . . . , y(k − n + 1)]T is

the output vector, and uk−1 = [u(k − 1), . . . , y(k − n + 1)]T
denotes the system input vector. The term dk+τ−1 = [d(k +
τ − 1), . . . , d(k)]T is the disturbance vector, and τ represents
the system delay or the relative degree of the system [11]. Note
that the output y(k) is considered measurable with initial values
in a compact set Sy0 , and the input–output data history wk is
also measurable. The system (1) is considered controllable—a
standard assumption used in all control design techniques.
Furthermore, several mild assumptions are needed.
Assumption 1: The unknown nonlinear function f(·) in (1)

is continuous and differentiable up to second order.
Assumption 2: The disturbance d(k) is upper bounded

|d(k)| ≤ dM , and the partial derivative |∂f/∂d(k)| ≤ DM is
also bounded, with DM as a positive constant.

Assumptions 1 and 2 are commonly found in the control
literature [1], [11]. With Assumption 2, by using the mean value
theorem, (1) can be rewritten as

y(k + τ) = f
(
wk, u(k), dk+τ−1

)
= f (wk, u(k), 0) + δT

f dk+τ−1

= f (wk, u(k), 0) + δdk
(2)

where

δf =

[
∂f

∂d(k + τ − 1)

∣∣∣∣
d(k+τ−1)=dξ(k+τ−1)

, . . . ,
∂f

∂d(k)

∣∣∣∣
d(k)=dξ(k)

]T

δdk
= δT

f dk+τ−1

and dξ(k) is between 0 and d(k), or dξ(k) = 0 + λ(d(k) − 0),
λ ∈ [0, 1].
Lemma 1: δdk

is bounded by |δdk
| ≤ τDMdM .

Proof: This lemma can be straightforwardly verified from
(2) and Assumption 2.

The purpose of Lemma 1 is to first move the disturbance
outside the nonaffine nonlinear function. Then, our objective is

to design a control law to drive the system output y(k) to track
a desired trajectory yd(k). Before we proceed, let us construct
the ideal nonaffine nonlinear discrete-time system as

yn(k + τ) = f (wk, u(k), 0) . (3)

The ideal system is defined for the sake of analysis based on the
original system by assuming that there are no disturbances.
Assumption 3: ∂f/∂u(k) = g(k) is bounded and satisfies

0 < gmin ≤ g(k) ≤ gmax, where gmin and gmax are positive
constants [2].
Assumption 4: The ideal system with no external distur-

bances (3) is invertibly stable [11], which means that bounded
system output can be realized by bounded system input.

Assumptions 3 and 4 are commonly found in adaptive con-
trol literature. Thereafter, we can draw the conclusion that
for any output trajectory yn(k + τ) = f(wk, u(k), 0), there
exists a unique and continuous (smooth) function u(k) =
f−1(wk, yn(k + τ), 0) [11]. Next, the controller methodology
is introduced.

III. CONTROLLER METHODOLOGY

A. Optimal Control

In this paper, we consider the long-term cost function as

J(k) = J (y(k), u) =
∞∑

i=t0

γir(k + i)

=
∞∑

i=t0

γi
[
q (y(k + i)) + uT(k + i)Ru(k + i)

]
(4)

where u is a given control policy, R is a positive design
constant, t0 is the initial time which can be set to zero without
loss of generality, and γ(0 ≤ γ ≤ 1) is the discount factor for
the infinite-horizon problem [8]. One can observe from (4) that
the long-term cost function is the discounted sum of the short-
term cost or Lagrangian which is expressed as

r(k) = q (y(k)) + uT(k)Ru(k)

= (y(k) − yd(k))T Q (y(k) − yd(k)) + uT(k)Ru(k)

=Qe2(k) + Ru2(k) (5)

where Q is a positive design constant. In this paper, we are
using a widely applied standard quadratic cost function defined
based on the tracking error e(k) = y(k) − yd(k) in contrast
with that in [5]. The cost function r(k) can also be viewed as
the system performance index for the current step.

As a matter of fact, for an optimal control law, which can be
expressed as u ∗ (k) = u ∗ (y(k)), the optimal long-term cost
function can be written as J ∗ (k) = J ∗ (y(k), u ∗ (y(k))) =
J ∗ (k), which is just a function of the current system output
[9]. Next, one can state the following assumption.
Assumption 5: The optimal cost function J ∗ (k) is finite and

bounded over the compact set S ⊂ R by JM .
The optimal cost is the minimum over the entire control

space.

996 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

B. Affinelike Dynamics

By applying the Taylor series expansion of (3) up to a second
order with respect to u(k) about the point u(k − 1) yields

y(k + τ) = f (wk, u(k), 0) + δdk

= f (wk, u(k − 1), 0) +
∂f (wk, u(k − 1), 0)

∂u
∆u(k)

+
1
2
· ∂2f (wk, uµ(k), 0)

∂u2
∆u2(k) + δdk

= F (wk, u(k)) + G(wk)∆u(k) + δdk
(6)

where

F (wk, u(k)) = f (wk, u(k − 1), 0)

+
1
2
· ∂2f (wk, uµ(k), 0)

∂u2
∆u2(k)

G(wk) =
∂f (wk, u(k − 1), 0)

∂u

and uµ(k) is between u(k) and u(k + 1) (or uµ(k) = u(k +
1) + λ(u(k + 1) − u(k)), λ ∈ [0, 1]) by using the mean value
theorem. In other words, no higher order terms in the Taylor
series expansion are ignored, since they are incorporated into
the second derivative. By observing (6), the ideal system (3)
can be expressed as

yn(k + τ) = F (wk, u(k)) + G(wk)∆u(k). (7)

The following lemmas are needed in order to transform the
system into an equivalent affinelike form and to verify that both
are equivalent.
Lemma 2: Considering any desired system trajectory yd(k +

τ) ∈ S and corresponding nominal desired control input
ud(k) = f−1(wk, yd(k + τ), 0), there exists uξ(k) between
any nominal control input un(k) and ud(k) to the system
such that

F (wk, un(k)) = F (wk, ud(k)) +
∂F (wk, uξ(k))

∂u

× ∂f−1 (wk, yξ(k + τ), 0)
∂y

· (yn(k + τ) − yd(k + τ)) (8)

where uξ(k) = f−1(wk, yξ(k + τ), 0).
Lemma 3: Considering the output of the ideal nonaffine

system yn(k + τ) = f(wk, un(k), 0) for a given input un(k),
then there exists yς(k + τ) between yn(k + τ) and yd(k + τ)
such that

un(k)=f−1 (wk, yn(k + τ), 0)
=f−1 (wk, yd(k + τ), 0)

+
∂f−1 (wk, yς(k+τ), 0)

∂y
(yn(k+τ) − yd(k+τ))

=ud(k)+
∂f−1(wk, yς(k+τ),0)

∂y
(yn(k+τ)−yd(k+τ)).

(9)

Proof: Lemmas 2 and 3 can be readily obtained by using
chain rule and mean value theorem.
Remark 1: Lemmas 2 and 3 locate two control-output

pairs (uξ(k), yξ(k + τ)) and (uς(k), yς(k + τ)) for any

control-output (un(k), yn(k + τ)) given the desired value
(ud(k), yd(k + τ)) satisfying (8) and (9) , respectively, where
uς(k) = f−1(wk, yς(k + τ), 0). Thereafter, their relationship
is investigated through following lemmas.
Lemma 4: Considering system (7) with Lemmas 2 and 3,

we have

∂F (wk, uξ(k))
∂u

· ∂f−1 (wk, yξ(k + τ), 0)
∂y

+ G(wk)
∂f−1 (wk, yς(k + τ), 0)

∂y
= 1. (10)

Lemma 5: For any yς(k + τ) ∈ S and corresponding control
input uς(k) = f−1(wk, yς(k + τ), 0), the following statement
holds:

∂f (wk, uς(k), 0)
∂u

· ∂f−1 (wk, yς(k + τ))
∂y

= 1. (11)

Proof: It can be straightforward to verify (11) by differen-
tiating yς(k + τ) = f(wk, f−1(wk, yς(k + τ)), 0) with respect
to yς(k + τ).

The aforementioned lemma shows that the nonaffine dy-
namics can be transformed into an equivalent affinelike form.
Therefore, substituting (8) into (6) produces the system dynam-
ics in terms of the tracking error as

e(k + τ) = y(k + τ) − yd(k + τ)
=F (wk, u(k)) + G(wk)∆u(k) + δdk

− yd(k + τ)

=F (wk, ud(k)) +
∂F (wk, uξ(k))

∂u

× ∂f−1(wk, yξ(k+τ),0)
∂y

· (y(k+τ) − yd(k+τ))

+ G(wk)∆u(k) + δdk
− yd(k + τ). (12)

Making use of Lemma 4, (12) can be written as

e(k + τ) = F (wk, ud(k)) + G(wk)∆u(k) + δdk
− yd(k + τ)

+
(

1 − G(wk)
∂f−1 (wk, yς(k + τ), 0)

∂y

)
· (y(k + τ) − yd(k + τ))

= F (wk, ud(k)) + G(wk)∆u(k) + δdk
− yd(k + τ)

+
(

1 − G(wk)
∂f−1 (wk, yς(k + τ), 0)

∂y

)
· e(k + τ). (13)

Combing (11) and (13), one has

e(k + τ) =
∂f (wk, uς(k), 0)

∂u

×
(

F (wk, ud(k)) + δdk
− yd(k + τ)

G(wk)
+ ∆u(k)

)
. (14)

By defining ∂f(wk, uς(k), 0)/∂u=κk, (14) can be rephrased as

e(k + τ) =
κk

G(wk)
(F (wk, ud(k)) − yd(k + τ))

+ κk∆u(k) +
κk

G(wk)
δdk

=Fa (wk, yd(k + τ), κk) + κk∆u(k) + δκk
(15)

YANG et al.: CONTROL OF NONAFFINE NONLINEAR DISCRETE-TIME SYSTEMS 997

Fig. 1. Online reinforcement learning neural controller structure.

where Fa(wk, yd(k + τ), κk) = (κk/G(wk))(F (wk, ud(k)) −
yd(k + τ)) and δκk

= (κk/G(wk))δdk
. Notice that 0 < gmin ≤

κk ≤ gmax, 0 < gmin ≤ G(wk) ≤ gmax due to Assumption 3.
By referring to Lemma 1, one also observes that δκk

is bounded
above by |δκk

| ≤ gmaxτDMdM/gmin.
By rewriting the nonaffine nonlinear discrete-time system

into an equivalent affinelike representation described by (15)
in terms of error dynamics and designing a controller for the
affinelike system, the difficulty of designing controllers for
original nonaffine systems can be overcome.

C. Online Controller Design

The objective is to design an online reinforcement learning
NN controller for (15) such that the following are satisfied:
1) all the signals in the closed-loop system remain semi uni-
formly ultimately bounded (SUUB); 2) the output y(k) follows
a desired trajectory yd(k) ∈ S; and 3) the long-term cost func-
tion (4) is minimized so that a near-optimal control input can
be generated [5]. The critic and action NN weight matrices are
initialized at zero and trained online.

The block diagram of the proposed controller is shown
in Fig. 1, where the action NN provides the control signal
to the nonlinear discrete-time system, whereas the critic NN
approximates the long-term cost function. The two NN weight
matrices are initialized at zero and trained online without any
offline learning phase.

Now, any continuous and differentiable function up to the
N th degree h(X) ∈ CN (S) on a compact set S can be written
as [12]

h(X) = WTφ(V TX) + ε(X) (16)

with ε(X) as an NN functional reconstruction error vector.
In our design, the output layer weight matrix W is adapted
online, whereas the input layer weight matrix V is selected
initially at random and held fixed during the entire learning
process. It is demonstrated in [12] that if the number of hidden
layer neurons is sufficiently large, the NN approximation error
ε(X) can be made arbitrarily small. According to Igelnik and
Pao [12], The linearly parameterized NN turns out to be a
practical compromise between a nonlinear multilayer NN and
the NN with fixed basis functions, combining both simplicity of
learning and efficiency of representation. Next, a novel weight
tuning algorithm is proposed after stating a mild assumption.
Assumption 6: The desired trajectory yd(k) of the system

output is bounded over the compact subset of S.

Next, the action and critic NN design and their weight tuning
are discussed.

D. Action NN Design

Consider the affinelike representation given by (15), and
select a desired control law

ud(k) = u(k − 1) − 1
κk

Fa (wk, yd(k + τ), κk) (17)

or desired change of control signal for the current step

∆ud(k) = − 1
κk

Fa (wk, yd(k + τ), κk) . (18)

By substituting (18) into (15), we get

e(k + τ) =Fa (wk, yd(k + τ), κk) + κk

×
(
− 1

κk
Fa (wk, yd(k + τ), κk)

)
+ δκk

= 0, if δκk
= 0. (19)

Therefore, the selection of the control law ensures the conver-
gence of the tracking error to zero after τ steps if no disturbance
is acting on the system.

However, since both of Fa(wk, yd(k + τ), κk) and κk are
unknown smooth nonlinear functions describing the dynamics
of the original nonaffine nonlinear system, the feedback control
ud(k) cannot be implemented in practice. Instead, an action
NN is employed to produce the control signal. From (17) and
considering Assumptions 3 and 4, the control signal can be
approximated by using an action NN given by

ud(k)=wT
a φa

(
vT

a s(k)
)
+εa (s(k))=wT

a φa(k)+εa(k) (20)

where s(k) = [wT
k , yd(k + τ)]T is the action NN input vector,

na is the number of neurons in the hidden layer, and wa ∈
Rna×1 and va ∈ R2n×na denote the target weights of the output
and hidden layer, respectively, with εa(k) = εa(s(k)) as the
action NN functional approximation error. Since the input layer
weight matrix va is fixed, the hidden layer activation function
vector φa(vT

a s(k)) ∈ Rna is denoted as φa(k).
The actual NN output can be expressed as

u(k) = ŵT
a (k)φa

(
vT

a s(k)
)

= ŵT
a (k)φa(k) (21)

where ŵa(k) ∈ Rna×1 is the weight matrix of the output layer.
Using the action NN output as the control signal and substi-

tuting (20) and (21) into (15) yield the error dynamics

e(k + τ) = Fa (wk, yd(k + τ), κk) + κk∆u(k) + δκk

= κk (u(k) − ud(k)) + δκk

= κk

(
w̃T

a (k)φa(k) − εa(k)
)

+ δκk

= κkζa(k) + da(k) (22)

where the weight estimation error of the actual NN is given by

w̃a(k) = ŵa(k) − wa (23)

ζa(k) = w̃T
a (k)φa(k) (24)

998 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

with

da(k) = −κkεa(k) + δκk
. (25)

E. Critic NN Design

In order to stabilize the closed-loop system along with
minimizing the cost function, a critic NN is employed to
approximate the unknown long-term cost function J(k). First,
the prediction error generated by the critic or the Bellman error
[4] is defined as

ec(k) = γĴ(k) − Ĵ(k − 1) + r(k) (26)

where the subscript “c” stands for the “critic” and

Ĵ(k) = ŵT
c (k)φc

(
vT

c e(k)
)

= ŵT
c (k)φc(k) (27)

with Ĵ(k) ∈ R is the critic NN output that approximates J(k).
The actual output layer weight matrix is denoted by ŵc(k) ∈
Rnc×1, and vc ∈ R1×nc represents the input weights which will
be selected at random initially and held thereafter. The term
nc denotes the number of the neurons in the hidden layer of
the critic NN. Here, the tracking error e(k) is selected as the
critic NN input since this information is available, making the
proposed scheme a variant of heuristic dynamic programming.
Again for convenience, the activation function vector of the hid-
den layer φc(vT

c e(k)) ∈ Rnc is simply denoted as φc(k). The
optimal long-term cost function J ∗ (k) can be approximated
with arbitrarily small reconstruction error εc(k). The optimal
cost function can be expressed as

J ∗(k)=wT
c φc

(
vT

c e(k)
)
+εc (e(k))=wT

c φc(k)+εc(k). (28)

The critic NN output layer weight estimation error can be
defined as

w̃c(k) = ŵc(k) − wc (29)

where

ζc(k) = w̃T
c (k)φc(k). (30)

Thus, we obtain

ec(k) = γζc(k) + γJ ∗ (k) − ζc(k − 1) − J ∗ (k − 1)

+ r(k) − εc(k) + εc(k − 1). (31)

Next, the NN weight update laws are introduced.

F. Weight Update for the Critic NN

Select the objective function to be minimized by the critic
NN as a quadratic function of Bellman error as

Ec(k) =
1
2
eT
c (k)ec(k) =

1
2
e2
c(k). (32)

By using a standard gradient-based adaptation method, the
weight updating algorithm for the critic NN is given by

ŵc(k + τ) = ŵc(k) + ∆ŵc(k) (33)

where

∆ŵc(k) = αc

[
−∂Ec(k)

∂ŵc(k)

]
(34)

with αc ∈ R as the adaptation gain.
Combining (26), (27), and (32) with (34), the critic NN

weight updating rule can be obtained by using the chain
rule as

∆ŵc(k) = − αc
∂Ec(k)
∂ŵc(k)

= −αc
∂Ec(k)
∂ec(k)

∂ec(k)
∂Ĵ(k)

∂Ĵ(k)
∂ŵc(k)

= − αcγφc(k)
(
γĴ(k) + r(k) − Ĵ(k)

)
. (35)

Remark 2: The tracking error signal in the critic NN weight
update can be viewed as a supervisory signal in the actor-critic
controller [8], providing an additional source of evaluation or
reward. As this error becomes close to zero, it can be viewed
as gradual withdrawal of the additional feedback to shape the
learned policy toward optimality. The supervisor may override
bad commands from the critic by providing stability initially
until the critic NN begins to learn in order to ensure safety and
guarantee minimum standard of performance [8].

G. Weight Update for the Action NN

The objective for adapting the action NN is to track the
desired output while lowering the long-term cost function.
Therefore, the action NN error can be formed by using the
functional estimation error ζa(k) and the critic signal Ĵ(k) as

ea(k) =
√

κkζa(k) + (
√

κk)−1
(
Ĵ(k) − Jd(k)

)
=
√

κkζa(k) + (
√

κk)−1Ĵ(k) (36)

where ζa(k) is defined in (24). The target long-term cost
function Jd(k) is considered to be zero (“0”), which implies
that it is small as possible.

The action NN weights ŵa(k) are tuned to minimize

Ea(k) =
1
2
eT
a (k)ea(k). (37)

Combining (22), (24), (36), and (37) and using the chain rule
yield

∆ŵa(k) = − αa
∂Ea(k)
∂ŵa(k)

= − αa
∂Ea(k)
∂ea(k)

∂ea(k)
∂ζa(k)

∂ζa(k)
∂ŵc(k)

= − αaφa(k)
(
κkζa(k) + Ĵ(k)

)T

= − αaφa(k)
(
e(k + τ) − da(k) + Ĵ(k)

)T

(38)

where αa ∈ R+ is the adaptation gain of the action NN. Since
the unknown bounded disturbances da(k) are typically unavail-
able, we assume the d(k) and the mean value of εa(k) over

YANG et al.: CONTROL OF NONAFFINE NONLINEAR DISCRETE-TIME SYSTEMS 999

the compact subset of R to be zero [5] and obtain the weight
updating algorithm for the action NN as

ŵa(k + τ) = ŵa(k) − αaφa(k)
(
e(k + τ) + Ĵ(k)

)T

. (39)

Remark 3: Here, too, the tracking error acts like a supervi-
sory [8] signal. As a consequence, the action NN weights are
driven to near-optimal weights.

IV. CONTROLLER DESIGN

Assumption 7: Let the unknown target output layer weights
for the action and critic NNs be upper bounded such that

‖wa‖ ≤ wam ‖wc‖ ≤ wcm (40)

where wam ∈ R+ and wcm ∈ R+ represent the upper bounds.
Here, ‖ · ‖ stands for the Frobenius norm [2].

Assumption 8: The activation functions for the action and
critic NNs are bounded by known positive values, such that

‖φa(k)‖ ≤ φam ‖φc(k)‖ ≤ φcm (41)

where φam, φcm ∈ R+ is the upper bound due to the hyperbolic
tangent function selected for the hidden layer.
Assumption 9: The NN approximation errors for the action

and critic NNs, εa(k) and εc(k), respectively, are bounded
above over the compact set S ⊂ R by εam and εcm [2].

Assumptions 7–9 are commonly used in NN control [2].
Lemma 6: With the Assumptions 3 and 9 and Lemma 1, the

term da(k) in (25) is bounded over the compact set S ⊂ R by

|da(k)| ≤ dam = gmaxεam + gmaxτDMdM/gmin. (42)

Combining Assumptions 1, 3, and 4 and Lemma 6, the main
result in the form of a theorem is introduced next.
Theorem 1: Consider the nonlinear discrete-time system

given by (2) whose dynamics can be expressed as (15). Let
the Assumptions 1–9 hold with the disturbance bound dM a
known constant. Let the control input be provided by the action
NN (21) with the critic NN output given by (27). Let the
action NN and the critic NN weights be tuned by (35) and
(39), respectively. Then, the tracking error e(k) and the NN
weight estimates of the action and critic NNs, w̃a(k) and w̃c(k),
are semi global uniformly ultimately bounded (SUUB) with
the bounds given by (A8) provided that the controller design
parameters are selected as

0 < αaφ2
a(k) <

gmin

g2
max

0 < αcφ
2
c(k) < 1/γ2 (43)

γ >
1
2

(44)

where αa and αc are the NN adaptation gains and γ is employed
to define the strategic utility function.

Proof: See the Appendix.
Remark 4: The need for an exact model of the nonlinear

discrete-time system in many ACD approaches [7] is relaxed
in this work through the supervised actor-critic architecture.
Remark 5: No explicit offline training phase is necessary.

In addition, the proposed methodology does not require the
stop/reset strategy utilized by adaptive critic schemes [7].

Remark 6: By using (35), one can show that the approximate
cost function converges to a near-optimal cost which, in turn, is
used for tuning the action NN weights (39). The action NN is
functioning well when the tracking error signal is near zero.
Then, the action NN weights will be driven by the approximate
cost function to attain near-optimal weights. As a result, the
action NN renders a near-optimal control input due to approxi-
mation errors and bounded disturbances. Existing ACDs ignore
the approximation errors and bounded disturbances [7].
Remark 7: Equation (43) relates the selection of adaptation

gains with the discount factor, whereas (44) provides how
the discount factor can be chosen in order to ensure stability
and convergence. Normally, the discount factor and adaptation
gains are selected by trial and error.

V. SIMULATIONS

Consider the following second-order input–output nonaffine
discrete-time system with delay given by

y(k+2)= 0.2 cos (0.8 (y(k)+y(k−1)))
+0.4 sin (0.8 (y(k)+y(k−1))+2u(k)+u(k−1))

+0.1 (9+y(k)+y(k−1))+
2 (u(k)+u(k−1))

1+cos (y(k))
+d

(45)

where the control action starts at k = 1 with the initial con-
ditions given by y(0) = 0, u(0) = 0. We can observe that the
system (45) satisfies Assumption 1, since the right-hand side
of (45) is continuous and differentiable up to infinite order.
A bounded uniformly distributed disturbance d will be used,
and therefore, Assumption 2 is satisfied. Differentiating (45)
with respect to u(k) yields

∂f

∂u(k)
= g(k) = 0.8 cos (0.8 (y(k) + y(k − 1))

+ 2u(k) + u(k − 1)) +
2

1 + cos (y(k))
.

It will be readily verified that 0.2≤g(k)<∞ and Assumption 3
holds. Furthermore, the right-hand side of (45) is a monoton-
ically increasing continuous function with respect to variable
u(k). As a result, for any desired y(k + 2) and given data-
history y(k), y(k − 1), u(k − 1), there exists a control input
u(k) satisfying (45). Hence, Assumption 4 is met. Moreover,
from (45), the system delay is given by τ = 2.

The reference output trajectory is selected as

yd(k) =




0.8 + 0.05
(
sin

(
πk
50

)
+ sin

(
πk
100

)
+ sin

(
πk
150

))
, for k > 0

0, for k ≤ 0.
(46)

The objective of our controller is to drive the system to track
the reference trajectory. The major challenge of this control
problem is that the system does not appear to be in a standard
affine form because the control input u appears nonlinearly
within the dynamics. The saturation value of control input is
considered as 0.5. The sampling time interval is set as 0.02 s,
and a uniformly distributed noise d is considered bounded with
an upper bound dM . Other parameters are listed in Table I.

1000 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

TABLE I
SUMMARY OF PARAMETERS

Fig. 2. Tracking performance of the online learning controller.

Fig. 3. Input signal of the online learning controller.

The adaptation gains of the NNs are chosen to satisfy (43)
and (44) as shown in Table I. Furthermore, their output layer
weights are initialized at zero, whereas their hidden layer
weights are initialized at random. The tracking performance
with the controller is shown in Fig. 2, which demonstrates
a satisfactory performance even under the influence of noise,
whereas the control input in Fig. 3 is bounded. Here, during
the controller implementation, the nonaffine system is not trans-
formed into an affinelike form.

VI. CONCLUSION

This paper presents a technique to obtain an equivalent
affinelike system representation for a class of nonaffine systems
in NARMAX form without losing any information. Bounded
disturbance is also integrated to imitate practical applications.
By using the system transformation, it becomes easier to con-
duct controller design and stability analysis.

The online control design using the supervisory actor-critic
architecture and linearly parameterized NN renders closed-loop
stability and relaxes the need for trial and error procedure of
selecting controller parameters. The performance of the con-
troller is tested on a general nonaffine nonlinear discrete-time

system, and satisfactory performance was observed. Finally,
the system transformation to affinelike form is only needed for
controller design, whereas it is not required during application
on nonaffine discrete-time systems.

APPENDIX

Proof of Theorem 1: Define a Lyapunov candidate as

L(k) =
4∑

i=1

Li =
γ1

3

τ−1∑
j=0

e2(k + j)

+
γ2

αa

τ−1∑
j=0

tr
(
w̃T

a (k + j)w̃a(k + j)
)

+
γ3

αc

τ−1∑
j=0

tr
(
w̃T

c (k + j)w̃c(k + j)
)

+ γ4

τ−1∑
j=0

ζ2
c (k + j) (A1)

where γi ∈ R+, i = 1, 2, 3, 4, are design parameters. Hence,
the first difference of the Lyapunov function is given by

∆L1 =
γ1

2
(
e2(k + τ) − e2(k)

)
=

γ1

2

(
(κkζa(k) + da(k))2 − e2(k)

)
≤− γ1

2
e2(k) + γ1g

2
maxζ

2
a(k) + γ1d

2
a(k). (A2)

Set γ2 = γ′
2γ

′′
2 , where γ′′

2((1 − αaφ2
a(k)gmin)/(gmin −

αaφ2
a(k)g2

max)) ≤ (1/2); therefore

∆L2 ≤ − γ2gminζ2
a(k) − γ2

(
gmin − αaφ2

a(k)g2
max

)
×

(
ζa(k) +

(
I − αaφ2

a(k)κk

)
gmin − αaφ2

a(k)g2
max

)2

+ γ′
2

(
Ĵ(k) + da(k)

)2

2
≤ − γ2gminζ2

a(k) − γ2

(
gmin − αaφ2

a(k)g2
max

)
×

(
ζa(k) +

(
I − αaφ2

a(k)κk

)
gmin − αaφ2

a(k)g2
max

)2

+ γ′
2ζ

2
c (k) + γ′

2 (J ∗ (k) + da(k))2 . (A3)

Similarly

∆L3 ≤ − γ3

(
1 − αcγ

2φ2
c(k)

)
e2
c(k)

− γ3γ
2ζ2

c (k) +
γ3

4
ζ2
c (k − 1)

+
γ3

4
(γJ ∗ (k) − J ∗ (k − 1))2 +

γ3

4
Qe2(k)

+
γ3

8
Rζ2

a(k) +
γ3

8
R

(
wT

a φa(k)
)2

+ γ3ε
2
cm (A4)

∆L4 = γ4

(
ζ2
c (k) − ζ2

c (k − 1)
)
. (A5)

YANG et al.: CONTROL OF NONAFFINE NONLINEAR DISCRETE-TIME SYSTEMS 1001

Combining (A2), (A3), (A4), and (A5) yields

∆L(k) = −
(γ1

2
− γ3

4
Q

)
e2(k)

−
(
γ2gmin − γ1g

2
max − γ3

8
R

)
ζ2
a(k)

−
(
γ3γ

2 − γ′
2 − γ4

)
ζ2
c (k) −

(
γ4 −

γ3

4

)
ζ2
c (k − 1)

− γ3

(
1 − αcγ

2φ2
c(k)

)
e2
c(k)

− γ2

(
gmin − αaφ2

a(k)g2
max

)
×

(
ζa(k) +

(
1 − αaφ2

a(k)κk

)
gmin − αaφ2

a(k)g2
max

)2

+ D2
M (A6)

where

D2
M =

(
γ1 +

γ′
2

2

)
d2
am +

(
γ′
2

2
+

γ3

4
(γ + 1)2

)
J2

M

+
γ3

8
Rw2

amφ2
am + γ3ε

2
cm. (A7)

For the standard Lyapunov analysis, (A6) implies that ∆L ≤
0 as long as the conditions (43) and (44) are satisfied and the
following holds:

‖e(k)‖ ≥ 2DM√
2γ1 − γ3Q

or

‖ζa(k)‖ ≤ 2
√

2DM√
8γ2gmin − 8γ1g2

max − γ3R

or

‖ζc(k)‖ ≤ DM√
γ3γ2 − γ′

2 − γ4

. (A8)

According to the standard Lyapunov extension theorem [2], the
aforementioned analysis demonstrates that the tracking error
‖e(k)‖ and the weights of the estimation errors are SUUB.

REFERENCES

[1] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive
Control Design. New York: Wiley, 1995.

[2] S. Jagannathan, Neural Network Control of Nonlinear Discrete-time
Systems. Boca Raton, FL: Taylor & Francis, 2006.

[3] D. Prokhorov and D. Wunsch, “Adaptive critic designs,” IEEE Trans.
Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep. 1997.

[4] J. Si and Y. T. Wang, “On-line learning control by association and re-
inforcement,” IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 264–276,
Mar. 2001.

[5] Q. Yang and S. Jagannathan, “Online reinforcement learning-based neural
network controller design for affine nonlinear discrete-time systems,” in
Proc. Amer. Control Conf., 2007, pp. 4774–4779.

[6] P. J. Werbos, “A menu of designs for reinforcement learning over
time,” in Neural Networks for Control, W. T. Miller, R. S. Sutton, and
P. J. Werbos, Eds. Cambridge, MA: MIT Press, 1990, ch. 3.

[7] J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive dynamic
programming,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 32,
no. 2, pp. 140–153, May 2002.

[8] M. T. Rosenstein and A. G. Barto, “Supervised actor-critic reinforcement
learning,” in Handbook of Learning and Approximate Dynamic Program-
ming, J. Si, A. G. Barto, W. B. Powell, and D. Wunsch, Eds. Piscataway,
NJ: IEEE Press, 2004, pp. 359–377.

[9] D. P. Bertsekas, Dynamic Programming and Optimal Control. Belmont.
Belmont, MA: Athena Scientific, 2000.

[10] O. Adetona, S. Sathananthan, and L. H. Keel, “Robust adaptive control of
nonaffine nonlinear plants with small input signal changes,” IEEE Trans.
Neural Netw., vol. 15, no. 2, pp. 408–416, Mar. 2004.

[11] M. S. Ahmed, “Neural-net-based direct adaptive control for a class of
nonlinear plants,” IEEE Trans. Autom. Control, vol. 45, no. 1, pp. 119–
124, Jan. 2000.

[12] B. Igelnik and Y. H. Pao, “Stochastic choice of basis functions in adaptive
function approximation and the functional-link net,” IEEE Trans. Neural
Netw., vol. 6, no. 6, pp. 1320–1329, Nov. 1995.

Author photographs and biographies not available at the time of publication.

